

TeamSite®

Workflow Developer’s
Guide

Release 5.5.1

Copyright 1999–2002 Interwoven, Inc. All rights reserved.

No part of this publication (hardcopy or electronic form) may be reproduced
or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of
Interwoven. Information in this manual is furnished under license by
Interwoven, Inc. and may only be used in accordance with the terms of the
license agreement. If this software or documentation directs you to copy
materials, you must first have permission from the copyright owner of the
materials to avoid violating the law which could result in damages or other
remedies.

Interwoven, TeamSite, OpenDeploy and the logo are registered trademarks
of Interwoven, Inc., which may be registered in certain jurisdictions.
SmartContext, DataDeploy, Content Express, OpenChannel,
OpenSyndicate, MetaTagger, TeamCatalog, TeamXML, TeamXpress, the
tagline and service mark are trademarks of Interwoven, Inc., which may be
registered in certain jurisdictions. All other trademarks are owned by their
respective owners.

This Interwoven product utilizes third party components under the following
copyrights with all rights reserved: Copyright 1995-1999, The Apache Group
(www.apache.org); Copyright 1986-1993, 1998, Thomas Williams, Colin
Kelley. If you are interested in using these components for other purposes,
contact the appropriate vendor.

Interwoven, Inc.
803 11th Ave.
Sunnyvale, CA 94089

http://www.interwoven.com

Printed in the United States of America
Part # 40-00-10-11-00-551-210

Table of Contents

About This Book 9
Notation Conventions 9
Windows Path Name Conventions 10
Online Documentation Errata 11

Chapter 1: Introduction 13
What’s New in TeamSite Workflow? 14
Workflow Terminology 16

Tasks 16
Workflow Models 16
Jobs 17
Workflow Templates 18
Job Specification Files 18

Workflow Elements 19
Tasks 19
Transitions 20
Conditions 21

Task Attributes 22
CGI Task Attributes 22
Dummy Task Attributes 23
Email Task Attributes 23
End Task Attributes 24
External Task Attributes 24
Group Task Attributes 25
Lock Task Attributes 26
Nested Job Task Attributes 27
Submit Task Attributes 27
Update Task Attributes 28
User Task Attributes 29
Workflow Attributes 30
Dynamic Attributes 30
3

Variables 34
User Variables 35
System Variables 35
Custom Variables 36

Nested Workflow 36
Creating Jobs with Nested Workflow 37

Chapter 2: Installing WorkflowBuilder 39
Installation Prerequisites 39
Installing the WorkflowBuilder Server 40

Windows NT or Windows 2000 Servers 40
Solaris Servers 40

Installing the WorkflowBuilder Client 41
Uninstalling WorkflowBuilder 42

Chapter 3: WorkflowBuilder GUI 43
Toolbars 43

The Menu Toolbar 44
The Tasks Toolbar 44
The Alignment Toolbar 44
The Zoom Toolbar 45

The View Menu 45
Workbook 46
Sticky Mode 46
Toolbars 46
Status Bar 46
Set Canvas Size 46
Grid 47
Snap to Grid 47
Grid Properties 47
Zoom Normal 47
Zoom to Fit 47
Zoom Percent 47
Zoom Custom 47
Attributes Window 48
Output Window 48
Perl Code Editor 48

Where To Go from Here 48
4 Workflow Developer’s Guide

Chapter 4: Using WorkflowBuilder 49
Sample Workflow Templates 49

Viewing and Modifying Example Templates in WorkflowBuilder 50
Creating New Jobs and Workflow Templates 51
Logging In 53
Editing Existing Workflow Templates 55
Placing Tasks on the Canvas 56
Drawing Transitions 56
Adding Text Labels 58
Moving Objects 58
Selecting Multiple Objects 59
Aligning Objects 59
Setting Attributes 60
Setting Variables 61

Creating System Variables 61
Creating Custom Variables 62
Creating User Variables 62

Configuring Templates to Include Preselected Files 63
Sending Workflow Templates to the Server 64
Workflow Template Constraints 66

Workflow Template Type Constraints 66
User Constraints 67
Branch Constraints 68
Defining a Workflow Constraint 68

Retrieving Files from the Server 71
Deleting Files from the Server 72
WorkflowBuilder Error Codes 74
5

Chapter 5: WorkflowBuilder Tutorial 77
Prerequisites 78

Setting up the Tutorial Environment 78
Tutorial Overview 79

Development 79
Deployment 81
Instantiation 81

Creating a New Workflow 82
Variables Overview 84

Naming Conventions 84
Custom Variables 84
Creating the sOwner Variable 85
Creating the uDescription Variable 85
Creating the cArea_VPath Variable 86
Creating the cUnlockFile Variable 86
Creating the uAuthor Variable 87
Creating the cNested_Job Variable 87

Defining Custom Variables 88
Specifying Workflow Attributes 90
Specifying Task Attributes 91
Specifying Transitions 95
Printing Your Template 96
Saving Your Template 97
Sending Your Template to the TeamSite Server 98
Testing Your Work 100

Chapter 6: Workflow Configuration Files 101
The available_templates.cfg File 102

available_templates.cfg Structure 102
Modifying available_templates.cfg from WorkflowBuilder 108

The available_templates.ipl file 110
The available_templates.dtd File 110
The iw.cfg File 112

[iwserver] Parameters 112
[iwsend_mail] Parameters 112
[workflow] Parameters 113
6 Workflow Developer’s Guide

Chapter 7: Workflow Template Files 115
Workflow Illustrated 115

Diagram Key 116
Workflow Template File 117
Instantiator CGI 118
Browser Interface (GUI) 118
Job Specification File 118
Server-Side Workflow Subsystem 118

Workflow Template File Structure 119
Simple Workflow Template File 120
The <template_script> Element 122
The CGI_info Directive 124
The TAG_info Directive 125
The __ELEM__ Directive 128
The __TAG__ Directive 129
The __INSERT__ Directive 132
The __VALUE__ Directive 133
Other Elements 134
Using Variables in Strings 135
Complex Workflow Template File 137

Debugging Workflow Files 139
iw_debug_mode 139
iw_output_file 139
Workflow Log File 140

Sample Workflow Templates 140
Sample Template Locations 140
Default Template Descriptions 141
Example Template Descriptions 147

Regular Expression Support 149
7

Chapter 8: Job Specification Files 151
Running Manually Created Jobs 151
Job Specification File Structure 153

Element Definitions 153
Perl Modules 169

TeamSite::WFsystem 169
TeamSite::WFworkflow 170
TeamSite::WFtask 172

Sample Job Specification File 173

Appendix A: The iwsend_mail.ipl Script 179
What’s New In iwsend_mail.ipl? 179
Configuring iw.cfg with Site-specific Information 180
Determining Email Addresses 181
Command Line Arguments 182

Multiple Email Recipients 182
Mail Sender 183
Subject Line 183
Message Body 183
Example 184

Appendix B: Creating a Nested Job 187
Creating Jobs with Nested Workflow 188

Index 191
8 Workflow Developer’s Guide

About This Book

The Workflow Developer’s Guide is a guide to installing, configuring, and using WorkflowBuilder.
Additionally, it describes the files used by TeamSite workflow and how to create and edit
them. This document is primarily intended for TeamSite Administrators and Master users,
and workflow developers.

Notation Conventions
This manual uses the following notation conventions:

Convention Definition and Usage

Bold Text that appears in a GUI element (including menu items, buttons, or
elements of a dialog box) and command names are shown in bold. For
example:

Click Edit File in the Button Bar.

Italic Book titles appear in italics.
Terms are italicized the first time they are introduced.
Important information may be italicized for emphasis.

Monospaced Commands, command-line output, and file names are in monospaced
type. For example:

The iwextattr command-line tool allows you to set and look up
extended attributes on a file.

Monospaced
italic

Monospaced italics are used for command-line variables. For example:

iwckrole role user

Means you must replace role and user with actual role and user values.
9

Notation of iw-home on UNIX and Windows Systems

This manual does not use the UNIX notation (iw-home; note the lack of italics) except
when specifically referring to procedures performed only in UNIX.

This manual uses the Windows version of iw-home notation (italicized iw-home) when
discussing both UNIX and Windows systems. The italics are an Interwoven convention
identifying iw-home as a variable. You should interpret the iw-home notation used in this
manual as follows:

• On UNIX systems, iw-home is the literal name of the directory containing the TeamSite
program files.

• On Windows systems, iw-home is the symbolic name of the directory that contains your
TeamSite program files. The default value of iw-home on Windows systems is:

C:\Program Files\Interwoven\TeamSite

The administrator performing Windows installation may have chosen an installation
directory different from the default.

Monospaced
bold

Monospaced bold represents user input. The > character that appears
before a line of user input represents the command prompt and should
not be typed. For example:

>iwextattr -s project=proj1 //IWSERVER/default/
main/dev/WORKAREA/andre/products/index.html

Monospaced
bold italic

Monospaced bold italic text is used to indicate a variable in user input.
For example:

>iwextattr -s project=projectname workareavpath

means that you must insert the values of projectname and
workareavpath when you enter this command.

[] Square brackets surrounding a command-line argument mean that the
argument is optional.

| Vertical bars separating command-line arguments mean that only one of
the arguments can be used.

Convention Definition and Usage
10 Workflow Developer’s Guide

Windows Path Name Conventions

Windows Path Name Conventions

In most cases, you can specify path names using standard Windows naming conventions (which
allow you to include spaces in path names). However, in some situations it might be necessary
to use MS-DOS naming conventions, which stipulate that no single file or directory name in a
path can contain a space or more than eight characters. If you encounter unexpected system
behavior after entering a path name using Windows NT naming conventions, enter the path
name again using MS-DOS conventions.

For example, instead of:

> C:\Program Files\Interwoven

you can try:

> C:\Progra~1\Interw~1

You can use the dir /x command to display the long and short versions of the file names in
the current directory.

Online Documentation Errata
Additions and corrections to this document are available in PDF format at the following website:

http://support.interwoven.com

When you reach this site:

1. Click Download.

2. Enter your user name and password.

3. Click All Documentation.

4. Click Current Release Notes.

5. Click the link to the appropriate PDF file.
11

12 Workflow Developer’s Guide

Chapter 1

Introduction
Workflow encompasses the procedures, tasks, people, and equipment that define business
practices within an organization. Using TeamSite to define and automate workflow ensures
that the business practices associated with your web-based assets are performed in a logical
and consistent manner leading to better organization and increased productivity.

TeamSite’s workflow system consists of three main components:

• WorkflowBuilder—Client-side application that enables workflow developers to build
workflow templates using an intuitive, drag-and-drop graphical interface which can then
be transferred to a TeamSite server. WorkflowBuilder is supported on Windows NT and
Windows 2000 platforms.

• WorkflowBuilder Server—Working with your TeamSite server, it provides a framework
for controlling complex website production processes. Your custom workflow templates
and sample templates (included with WorkflowBuilder) are stored on the TeamSite server
and made available to end users. WorkflowBuilder Server is supported on Windows NT,
Windows 2000, and Solaris platforms.

• Browser-based client-side user interface—Displays forms that enable end users to enter
data that defines and controls specific workflow actions. These end users include those
creating jobs based on the workflow templates, and those performing the tasks contained
within these jobs.

These three components are depicted in the following illustration.
13

Introduction

Simplified Workflow Template Lifecycle

What’s in TeamSite Workflow?

This release of TeamSite and WorkflowBuilder includes improved client and server functionality to
provide greater flexibility and power for managing your organization’s web-based assets. This
document describes the features specific to the TeamSite’s workflow functionality that enables you to
design and implement website production processes custom-built or adapted for your organization.

TeamSite’s workflow capabilities include the following features:

• Dynamic Attributes—The ability to change properties of instantiated jobs and tasks,
including the ability to:

– Change the owner of a job or a task

– Add and remove users and groups from a grouptask

– Modify the timeout period for a task

– Modify the areavpath of a task

– Modify various task attributes (for example, lock or read-only)

Template development
using WorkflowBuilder

.wft & .wfb
files to
server

TeamSite Server

template
available to
job creators

Workflow
template
verified

Workflow
template
created

(.wft & .wfb)

Access
constraints

defined

.wft files
referenced in
available_

templates.cfg

.wfb files
stored on

server

TeamSite end-users

Author receives
assignment,

modifies

Editor
creates new
job based

on template

Editor
approves

modifications

content file

to content file

New content
available on

TeamSite
server

using TeamSite GUI
14 Workflow Developer’s Guide

What’s in TeamSite Workflow?

• Nested Workflow—The ability to nest any number of workflows to create larger, more
complex processes. Nested workflow can be initiated by:

– Pre-configured job specification files

– Users in the course of a job using the standard WFT instantiator

WorkflowBuilder includes the following features:

• Additional Sample Workflow Templates—For demonstrating the functionality of
timeout notification of editors and nested jobs.

• Workflow Constraints—Teamsite enables you to control access to specific workflow
templates by setting constraints on the template files when they are published to the
TeamSite server. The constraints can be set by workflow type, users, roles, and branch.

• Template Titles—Workflow template files can be assigned a title (which differs from the
actual file name) when published to the TeamSite server.

• Template Validation—Verify Templates feature ensures the workflow template has a
Start Task, an End Task, the proper transition types between tasks, and a job owner

• Attach Files to Jobs—Workflow templates can specify files that are attached to tasks that
are ultimately assigned to authors.

• Printable workflow template files—WorkflowBuilder now includes the ability to print
and preview workflow templates.

• Perl Code window in WorkflowBuilder—Enables template developers to add custom
Perl code to create custom variables.

• Remote template management—WorkflowBuilder now includes functionality that
enables you to copy, delete, and change the status of workflow templates already transferred
to your TeamSite server.
15

Introduction

Workflow Terminology

This section defines workflow terminology as it relates to TeamSite. Note that many of these
terms have more general definitions outside of the context of TeamSite.

Tasks

A task is a unit of work performed by a single user or process. Each task is associated with a
TeamSite branch and workarea and one or more files. The user or process owning a task can
modify, add files to, or remove files from the task (provided the task is not a read-only task for
content approval).

See “Tasks” on page 19 for a detailed description of the 11 task types defined within
WorkflowBuilder.

Additionally, tasks have two possible states: active and inactive. A task becomes active when
its predecessor task signals it to do so (predecessor tasks and conditions for activation are all
configured as part of the workflow model). After the task has been activated, users or external
programs can work on it. For example, after a user task has been activated, the user can work
on the files contained in the task. After an external task has been activated, the appropriate
external program can run on the files contained in the task. Inactive tasks are tasks that have
been completed, or that have not been activated yet.

Note: A workflow task cannot have more than 512 predecessors.

Workflow Models

A workflow model is a general workflow specification that can be used repeatedly. Each workflow
model describes a process that can include user tasks and a wide variety of automated tasks.
Workflow models typically are designed by business managers and configured by a system
administrator or Interwoven Client Services (http://www.interwoven.com/services).

The following diagram shows a simple assign-edit-approve workflow model. Email is sent to
the participants at each stage of the process, and an automated task is performed at the end.
16 Workflow Developer’s Guide

Workflow Terminology

Note that the people involved are not actual people, but are represented as an editor and an
author, also note that no specific files are mentioned. This is an important distinction between
the generalized workflow model and the job instance described in the next section.

Jobs

A job is a specific instance of a workflow model containing a set of interdependent tasks. One
example of a TeamSite job is the set of tasks needed to prepare a new section in a marketing
website to support a new product launch.

In TeamSite, a description of a workflow model is called a job specification. When a job specification
is loaded into the workflow subsystem it becomes a job instance. Each job is a specific instance of
a workflow model. When a job is created, the job creator must supply all the specific information
for that job. For example, the workflow model depicted in the previous section could be used
for the marketing web site’s new product launch. Note that the job specification (shown in the
following diagram) includes specific TeamSite users: Andre (the editor) and Pat (the author), and
specific files that need to be edited: index.html and banner.gif.

submitted

Editor
initiates job

Task:
Email sent
to Author

Task:
Editor
reviews

ApproveReject
Task:

Automated
deployment

Task:
Author

edits files

Task:
Email sent
to Author

Task:
Email sent
to Editor

Task:
Email sent
to Author

Task:
Content

to staging
area

Author’s
work
17

Introduction

Because jobs follow predefined workflow models, tasks cannot be added to or removed from
individual jobs.

Workflow Templates

Workflow templates are XML files that describe a particular workflow model. You can create these
files using WorkflowBuilder, then transfer them to your TeamSite server where they can be used
to create a new job.

Note: The term “workflow template” is sometimes used to describe either a file that describes
a workflow model, or a file that describes a particular job instance (also known as a job
specification file). Both types of file end with the .wft extension.

Job Specification Files

Job specification files are XML files that describe a specific job. You can create these files using
WorkflowBuilder, then transfer them to your TeamSite server where they are immediately
invoked.

submitted

Andre
initiates job

Task:
Email sent

to Pat

Task:
Andre
reviews

ApproveReject
Task:

Automated
deployment

Task:
Email sent

to Pat

Task:
Email sent
to Andre

Task:
Email sent

to Pat

Task:
Content

to the
staging area

Pat’s
work

Task:
Pat edits

index.html
and

banner.gif
18 Workflow Developer’s Guide

Workflow Elements

Workflow Elements

There are three major types of workflow elements defined in WorkflowBuilder and TeamSite:

• Tasks

• Transitions

• Conditions

These elements are introduced in the following sections.

Tasks

You can include the following tasks in your workflow template or job specification file. For
more information about task attributes, see page 22.

Task Description

 User Defines the task that appears on a user's task list.

 Group Appears in the task list of each member of the arbitrary group of users specified
in the task. A group task becomes identical in behavior to a user task when one
user from the group takes ownership of the task via the TeamSite GUI or the
CLT iwtaketask.

 Submit Performs a submit operation on its contained files. If the submit task succeeds,
the specified successor tasks are signaled. If the submit task fails, it goes into a
special state that the user interface can detect. When the user interface resolves
a conflict, it retires the operation so that the job can continue. For the purposes
of workflow, a submit task is considered successful even if some of its contained
files were not submitted because of not being up to date with the staging area.

 Update Performs a Get Latest or Copy to Area on its contained files. If the update task
fails because of conflicts, it goes into a state like that for a failed submit task.
The user interface is responsible for resolving conflicts and retrying the update
task.

 CGI Behaves much like an external task, but does not run a <command> element.

 External Runs external programs when it is activated.

 Email Sends email to specified users.

 Dummy Used as a spacer or timed task. Dummy tasks let a workflow designer create a
time interval unrelated to any actual job activity. A dummy task has no owner
or areavpath.
19

Introduction
Transitions

You can choose among four different kinds of transitions for the transition you place between all
types of tasks, except the End task. An End task can only accept Successor or Timeout transitions
from predecessor tasks; an End task ends a workflow and does not transition to any other task.

Transitions can be qualified with logical conditions, such as AND, OR, or NOT.

 Lock Attempts to acquire locks on files it owns. If it succeeds, it transitions to the
successors specified in its success transition. If it fails, it transitions to the
successors specified in its failure transition. This provides users with a way
of backing out of a job or choosing an alternate path in a job that cannot acquire
its locks.

 End Ends a job.

 Nested
 Workflow
 Job

Creates a task that is started when another task within a job reaches a certain
state. Nested tasks are considered child tasks and the completed tasks that
trigger them are considered parent tasks. The attributes are similar to a
External tasks except you have to enter a workflow template path or a job file
name instead of a command name.

Transition Description

Successor The most common type of transition. A successor transition specifies the
next task in the workflow.

Timeout Sets an optional time limit for the completion of a task. When time runs out
the task is inactivated and its successors are signalled to become active. The
time value can be specified in one of two forms: the number of hours and
minutes after the task becomes activated that the timeout should occur, or
the month day, year, hour, and minute at which the timeout should occur.

Reset Resets a task so that it is in its original state. Note the distinction from
“inactivate” which maintains information about its prior state.

Inactivate A task becomes inactive at the time it signals its successors. However it is
sometimes necessary to inactivate tasks other than those which have signalled
a task when that task becomes active.
20 Workflow Developer’s Guide

Workflow Elements
Conditions

AND, OR, and NOT condition elements specify the conditions under which a task will become
active. When a finishing task signals a successor task, the successor task notes that the finishing
task has signaled and then evaluates the logic of the element to determine if it should become
active.

For example, if you want Task C to be activated only when Task A and Task B have been
completed, draw transition lines from the tasks A and B to a AND element, then draw a
transition line from the AND element to Task C. You can qualify a transition with any one
of the following condition elements:

To add a conditional element to a transition:

1. Select a condition element from the toolbar.

When you move the pointer to the canvas, a graphic icon appears under it to indicate that a
mouse click will place a graphic on the canvas.

2. Draw transition lines from predecessor tasks to the condition, and from the condition to the
successor task.

Condition Description

 AND All tasks linked to this element must be completed to activate a successor task.

 OR One of the tasks linked to this element must be completed to activate a successor
task.

 NOT The task must not be completed to activate a successor.
21

Introduction
Task Attributes

Workflow elements (jobs, tasks, and transitions) all have special attributes which you must
configure when you create a workflow template or job. Different types of tasks have different
possible attributes. Some of these attributes are mandatory and some are optional.

Some attributes can be set using variables. If attributes are set with user variables, the file will
be a workflow template which may be invoked through the New Job menu item or the Submit
button in TeamSite. If attributes are not set with user variables, the file will describe a specific
job.

The attributes that are available for different tasks and other workflow elements are described
in the following sections.

CGI Task Attributes

These attributes are available for all CGI tasks:

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Owner Username of the task's owner. (Required entry.)

Immediate When set to Yes (immediate="t") this attribute specifies that any other
cgitasks in the workflow by executed immediately.

Lock Specifies whether or not the task will try to acquire locks on the files it
contains (can be Yes or No). For more information, see the TeamSite
Administration Guide.

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be Yes or No, but there must be one task set to Yes).

AreaVPath Specifies the TeamSite area associated with this task. (Required entry.)

Command Specifies the full path of the program to be run on activation
The program it references must be located in iw-home/httpd/iw-bin/.
(Required entry.)
22 Workflow Developer’s Guide

Task Attributes
Dummy Task Attributes

These attributes are available for all dummy tasks:

Dummy tasks require a timeout transition.

Email Task Attributes

These attributes are available for all email tasks:

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be Yes or No).

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Owner Username of the task's owner. (Required entry.)
23

Introduction
End Task Attributes

This attribute is available for all end tasks:

External Task Attributes

These attributes are available for all external tasks:

Lock Specifies whether or not the task will try to acquire locks on the files it
contains (can be true or false). For more information, see the TeamSite
Administration Guide.

Retry Specifies whether or not the email sent by this task should be resent if for
any reason it is not delivered to the recipient (default is Yes).

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be true or false).

AreaVPath Specifies the TeamSite area associated with this task. (Required entry.)

Email Specifies the email address to send mail to. (Required entry.)

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name (Required) Name of the task. Each task within a job must have a unique
name.

Description A description of what the task does.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Owner Username of the task's owner. (Required entry.)
24 Workflow Developer’s Guide

Task Attributes
Group Task Attributes

These attributes are available for all group tasks:

Lock Specifies whether or not the task will try to acquire locks on the files it
contains (can be Yes or No). For more information, see the TeamSite
Administration Guide.

Retry Specifies whether or not the command executed by this task should be
retried if it fails (default is Yes).

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be Yes or No).

AreaVPath Specifies the TeamSite area associated with this task. (Required entry.)

Command Specifies the full path of the program to be run on activation, followed by
any initial arguments. For more information, see the TeamSite Administration
Guide. (Required entry.)

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Lock Specifies whether or not the task will try to acquire locks on the files it
contains (can be true or false). For more information, see the TeamSite
Administration Guide.

Readonly Specifies whether users can add, remove, or modify files in the task (can be
true or false).
25

Introduction
Lock Task Attributes

These attributes are available for all lock tasks:

RetainOwner After a group task has had someone take ownership of the first time,
setting this to Yes causes the group task to behave similar to a user task by
retaining the same owner from that point on.
For example, if you loop back to an previous task and once again transition
to that task, it will be considered as transitioning to the person who first
claimed ownership of the task and not go back into a “shared by pool”
waiting for someone to claim ownership again.

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be true or false).

AreaVPath Specifies the TeamSite area associated with this task. (Required entry.)

Sharedby Specifies the set of users who share this group task. These users can be
individual TeamSite users, or Windows or UNIX user groups. (Required
entry.)

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Owner Username of the task's owner. (Required entry.)

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be true or false).

AreaVPath Specifies the TeamSite area associated with this task. (Required entry.)

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks. In the case of a workflow template, this can be a
relative path under iw-home/local/config/wft.
26 Workflow Developer’s Guide

Task Attributes
Lock tasks also have two types of transition that are not available for other tasks: Success and
Failure. Both type of transitions are required for all lock tasks.

Nested Job Task Attributes

These attributes are available for all nested tasks:

Submit Task Attributes

These attributes are available for all submit tasks:

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Owner Username of the task's owner. (Required entry.)

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be Yes or No).

Wffile Specifies the full path of the workflow template or job specification file to
be run on activation. (Required entry.)

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.
27

Introduction
Update Task Attributes

These attributes are available for all update tasks:

Owner Username of the task's owner. (Required entry.)

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be Yes or No).

Skip Conflicts Specifies whether or not to submit conflicting files (can be Yes or No).

Skip Locked Specifies whether or not to submit locked files (can be Yes or No).

Override Specifies whether or not to overwrite the staging area version of
conflicting files (can be Yes or No).

Unlock If set to Yes, then the submittask will unlock all files following successful
submission.

SaveComments If set to Yes, the comments are saved. Defaults is Yes.

AreaVPath Specifies the TeamSite area associated with this task. (Required entry.)

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Owner Username of the task's owner. (Required entry.)

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be Yes or No).

Delete Specifies whether or not to propagate deleted files to the destination area
(can be Yes or No).

Overwrite Specifies whether or not to overwrite the destination area version of
conflicting files (can be Yes or No).
28 Workflow Developer’s Guide

Task Attributes
User Task Attributes

These attributes are available for all user tasks:

Lock Specifies whether or not the task will try to acquire locks on the files it
contains (can be Yes or No). For more information, see the TeamSite
Administration Guide.

AreaVPath Specifies the TeamSite area associated with this task. (Required entry.)

SrcAreaVPath Specifies the area from which files are copied. (Required entry.)

Files Specifies the files that the actions of a task affect. WorkflowBuilder can
only specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for
use by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.

Attribute Description

Name Name of the task. Each task within a job must have a unique name.
(Required entry.)

Description A description of what the task does.

Owner Username of the task's owner. (Required entry.)

Lock Specifies whether or not the task will try to acquire locks on the files it
contains (can be Yes or No). For more information, see the TeamSite
Administration Guide.

Readonly Specifies whether users can add, remove, or modify files in the task (can be
true or false).

Start Specifies whether or not this task is activated at the time that the job is
invoked (can be Yes or No).

AreaVPath Specifies the TeamSite area associated with this task. (Required entry.)

Files Specifies the files that the actions of a task affect. WorkflowBuilder can only
specify files for start tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level for use
by a CGI task or the TeamSite GUI. For example, the Priority variable
is used at the GUI-level to set the priority of a task.
29

Introduction
Workflow Attributes

These attributes are available for all jobs and workflow templates:

Dynamic Attributes

TeamSite includes the functionality to modify a number of important job and task
attributes given certain restrictions (including, but not limited to, those listed in the following
table). This ability to make changes to tasks already instantiated is supported from the
command-line and from the TeamSite GUI.

Attribute Description

Name Name of the job or workflow template. (Required entry.)

DebugMode Sets the Debug flag to On in the workflow template. When the job
is instantiated, rather than running the actual job, a Debug output
page is created. It contains details about what the instantiated XML
looks like plus what Perl variables were declared.

PreselectedFiles Enables end-users (using the TeamSite GUI) to configure the workflow
to automatically include files selected before starting the job. The
preselected files are attached and sent to other users along with
assigned tasks.

Variables Key (variable name)/value pairs that are set at the Task or Job level
for use by a CGI task or the TeamSite GUI. For example, the Priority
variable is used at the GUI-level to set the priority of a task.

Description A description of what the job does.

Owner Username of the job's owner. (Required entry.)

Modification Restriction

Change the owner of a job Limited to masters and the current owner of a job

Add, remove, or change job variables Limited to masters and the current owner of a job

Change the owner of a task Limited to masters, job owner, and task owner

Add and remove users and groups
from a grouptask

Limited to masters, job owner, and task owner
(command-line only; not supported in GUI)

Change the timeout period for a task Limited to masters, job owner, and task owner
30 Workflow Developer’s Guide

Task Attributes
The procedures for making these dynamic modifications from the Job Administration GUI are
contained in the next section. The command-line reference begins on page 34.

Dynamically Modifying Attributes Using the GUI

TeamSite includes a Job Administration GUI for managing and modifying jobs and tasks, and their
corresponding attributes. Complete the following procedure to display a job
in the Job Administration GUI:

1. Log in to TeamSite by typing the following command in the Location (Netscape) or
Address (Internet Explorer) field of your browser:

http://TeamSite_server_name/webdesk/login

The TeamSite login screen is displayed.

2. Select the Master role from the drop-down menu.

3. Enter your username and password in the corresponding fields.

4. Click Login.

The main TeamSite window is displayed.

5. Select New Job from the File drop-down menu.

The New Job window is displayed.

6. Complete the following steps in the New Job window:

a. Select one of the templates, for example: Author Assignment.

b. Type a description of the new job, for example: Test of Dynamic Attributes.

Change the areavpath of a task Limited to masters, job owner, and task owner

Change various task attributes
(for example: lock, read-only)

Limited to masters, job owner, and task owner

Add, remove, or change task variables Limited to masters, job owner, and task owner
(command-line only; not supported in GUI)

Modification Restriction
31

Introduction
c. Click New Job.

The New Job Template window is displayed with the description you entered in step b in the Job
Description field.

7. Complete the following steps in the New Job Template window:

a. Select an Author from the drop-down menu.

b. Select a Branch from the drop-down menu.

c. Type the name of a workarea in the Enter Workarea field.

d. Click Run Job.

The main TeamSite window is displayed.

Note that the owner of the Job and the Task is the user “Administrator”

8. Select Job Admin from the Job Options drop-down menu.
32 Workflow Developer’s Guide

Task Attributes
The Job Admin window is displayed.

9. Select the attribute you want to change from one of the four drop-down menus.

The top drop-down menu contains only the Change Job Owner option. The other three offer
the following options:

– Change Task Owner

– Change Area

– Change Attributes

10.To change an attribute, perform the procedure described in the following table:

Change Window Displayed Procedure Result

Job Owner Change Job
Owner

• Enter the new job owner (this
user must be a valid TeamSite
user).

• Click Change.

The Job Admin
window displays the
new Job Owner.

Task Owner Change Task
Owner

• Enter the new task owner (this
user must be a valid TeamSite
user).

• Click Change.

The Job Admin
window displays the
new Task Owner.
33

Introduction
Dynamically Modifying Task and Job Attributes from the Command-line

In addition to the GUI-based functionality, TeamSite includes Command-Line Tools (CLTs)
that provide equivalent functionality as the GUI version. These CLTs include:

Variables

Variables allow you to specify attributes that are subject to change. There are three types
of variables in WorkflowBuilder:

• User Variables

• System Variables

• Custom Variables

Area Change Task
Area

• Enter the new workarea.
• Click Change.

The Job Admin
window displays the
new Task Owner.

Attributes
(on a task)

Change Task
Attributes

• Click the corresponding True
or False option button to define
whether the corresponding task
is locked or read-only.

• Click Change.

The Job Admin
window displays the
new attributes.

Attributes
(on author
content
approval)

Change Task
Attributes

• Click the corresponding True
or False option button to define
the corresponding task:
– skipconflicts
– skiplocked
– override
– unlock
– savecomments

• Click Change.

The Job Admin
window displays the
new attributes.

• iwsettaskattrib • iwsetjobowner • iwsetjobdescription

• iwsettasktimeout • iwsettaskownerandarea • iwaddtaskowner

• iwrmtaskowner • iwaddtaskgroup • iwrmtaskgroup

Change Window Displayed Procedure Result
34 Workflow Developer’s Guide

Variables
You can use these variables when setting attributes of a workflow element. Each type of
variable is described in the sections that follow.

User Variables

User variables are variables which will appear in a workflow template in TeamSite. The job
creator can set these variables to describe a specific job.

For example, you might describe the Owner attribute of a user task with a user variable.
When a job creator selects the workflow template in TeamSite, the task owner in the New
Job form would have to be set.

System Variables

System variables are characteristics of the system, or of the user who is creating a job from
your workflow template.

Available system variables are:

Variable Description

iw_home Location of the TeamSite home directory.

iw_role Role of the user instantiating the job.

iw_session Current session string.

iw_template_file Path to the current workflow template.

iw_template_name Name of the current workflow template.

iw_use_default If all user variables have default values and this is enabled, those
default values are used to create the job (the value entry form
does not appear at job creation time).

iw_user Name of the current user, typically the job creator.
When a job is created, all its associated tasks are also created.
Therefore, any task or workflow attributes that were specified
as iw_user have their value set to the job creator's user id.
35

Introduction
Custom Variables

WorkflowBuilder includes a Perl Code Editor that enables you to add Perl code (including
custom variables) to workflow templates. This functionality is commonly used to control the
appearance of the forms associated with your template. Chapter 5, “WorkflowBuilder Tutorial,”
describes the creation and use of a number of custom variables.

Nested Workflow

TeamSite enables workflow developers to create nested workflow—workflow that is contained within
other jobs or tasks. The implementation of nested workflow is similar to external and CGI tasks
where the activation of workflow tasks is either automatically or manually instantiated causing an
association of a new job with the workflow task. The nesting process creates a parent/
child relationship with the task as the parent and the job as the child.

The relationship between a workflow task and its nested workflow includes:

• the ability to pass variables and file lists from the parent task to the child job

• the ability for nested jobs to pass some or all variables and file lists to the parent job upon
the child job’s completion

• the ability for the child job to cause a transition to occur in the parent task upon the child
job’s completion

• the lifetime of a nested job is dependent upon its parent task’s workflow lifetime—it should
not be removed from the backing store until its parent task is deleted

iw_desc Description of the job entered in the job description box when
creating a job. This variable is usually used for the workflow's
description attribute.

iw_workarea Name of the current workarea (if you create the job from the
workarea view, or via submit).

iw_areaowner Name of the user who owns the workarea where a job is crated.

iw_branch Name of the current branch.
36 Workflow Developer’s Guide

Nested Workflow
Workflow tasks can either be specified with a path to a job specification file or to a workflow
template file (.wft). In the case of a job specification file, upon activation of the workflow task,
TeamSite compiles and instantiates a new job using the specification file. In the case of a
workflow template file, the task owner must manually start the task using the New Job window
to input job variables and subsequently initiate the job.

Creating Jobs with Nested Workflow

Complete the following procedure to create a job with a nested workflow task. This procedure
assumes that the author_assignment_with_nested_job.wft file installed with
WorkflowBuilderis specified in your available_templates.cfg file. If it is not, you can
locate the sample workflow file in iw-home/local/config/wft/examples and add it to
your available_templates.cfg file.

The author_assignment_with_nested_job.wft file defines a job that contains two tasks,
the second of which does not begin until the first has been approved by an editor.

1. Log into TeamSite using the Editor, Master, or Administrator role.

2. Select File > New Job from the drop-down menu.

The New Job window is displayed.

3. Complete the following steps in the New Job window:

a. Select the Author Assignment with Optional Nested Job template.

b. Type a description of the new job, for example: Test of Nested Workflow.

c. Click New Job.

This executes the iwwft_instantiator.cgi to instantiate the job. The New Job
Template window is displayed with the description you entered in step b in the
Job Description field.

4. Complete the following steps in the New Job Template window:

a. Select an Author from the drop-down menu (to make this demonstration easier, select the
same user as you are currently logged in as).

b. Select a Branch from the drop-down menu.
37

Introduction
c. Type the name of a workarea in the Enter Workarea field.

d. Click Run Job.

5. In the main TeamSite window, click To Do to display the assignment of the job you just created.

Note the following in the graphic:

– The Owner and Creator are both root.
– This screen does not make any mention of the nesting—it is invisible to the person to which

the task is assigned.
38 Workflow Developer’s Guide

Chapter 2

Installing WorkflowBuilder
In addition to installing the TeamSite server and client as described in the TeamSite Administration
Guide, you must install two WorkflowBuilder components to complete the installation. These
components are:

• WorkflowBuilder Server—Must be installed on your Solaris, Windows NT, or 2000 server
running TeamSite 4.5 or later.

• WorkflowBuilder client application—Must be installed on a Windows 95, 98, NT, or 2000
system that is, or can be, networked to your TeamSite server.

Installation Prerequisites
Ensure these prerequisites are met before installing or upgrading the two WorkflowBuilder
components:

• A TeamSite server (version 4.5 or greater) is properly installed and licensed as described
in the TeamSite Administration Guide.

• You have the WorkflowBuilder Server component that matches your server platform
(Solaris, Windows NT, or Windows 2000.

• For the server where TeamSite is installed, you must have Administrator privileges
(Windows) or root access (Solaris).

• If you have made changes to a previously installed version of the available_templates.ipl
file and want to preserve the changes, make a backup copy and rename it. This prevents the
WorkflowBuilder Server installation program from overwriting your existing
available_templates.ipl file.

You can merge your customizations into the new available_templates.cfg file after
you have finished installing WorkflowBuilder.

Note: Do not edit the new version of available_templates.ipl.
39

Installing WorkflowBuilder
Installing the WorkflowBuilder Server
Complete the following procedure that corresponds with your server platform.

Windows NT or Windows 2000 Servers

1. Log on to the system where your TeamSite server is installed as a user with Administrator
privileges.

2. Insert the TeamSite CD-ROM.

The WorkflowBuilder executables are on the same CD-ROM as the TeamSite server.

3. Double-click WFBServer.exe.

The remainder of the installation program is completed automatically.

Solaris Servers

1. Log on to the system where your TeamSite server is installed as the root user.

2. Insert the TeamSite CD-ROM.

The WorkflowBuilder installation files are on the same CD-ROM as the TeamSite server.
The top level of the CD contains the WorkflowBuilder Server installation file.

3. Copy the installation file to the TeamSite installation directory, iw-home:

% cp wfbserver.5.5.1.BuildNumber.tar.gz iw-home

4. Decompress the installation file:

% gunzip wfbserver.5.5.1.BuildNumber.tar.gz

% tar xvf wfbserver.5.5.1.BuildNumber.tar
40 Workflow Developer’s Guide

Installing the WorkflowBuilder Client
5. Start the installation program:

% ./wfbinstall.sh

6. Respond to the prompts displayed by the installation program.

Installing the WorkflowBuilder Client

1. Log on to the system where you want to install WorkflowBuilder as a user with
Administrator privileges.

2. Insert the TeamSite CD-ROM in your local drive.

The WorkflowBuilder executables are on the same CD-ROM as the TeamSite server.

3. Double-click WorkflowBuilder.exe.

The WorkflowBuilder installation program prompts you to accept the default installation
directory C:\Program Files\Interwoven\WorkflowBuilder.

4. Click Next to accept the default location, or Browse to specify a different location.

The remainder of the installation program is completed automatically.
41

Installing WorkflowBuilder
Uninstalling WorkflowBuilder

If you are upgrading the WorkflowBuilder client (from version 4.5), you must uninstall the old
version before beginning the installation program.

1. Select Start > Settings > Control Panel.

2. Double-click the Add/Remove Programs icon.

3. Select Interwoven Workflow Builder, and click Add/Remove.

4. Click the Remove option button.

5. Click Next, then OK to confirm that you want to remove the WorkflowBuilder client.

Note: You cannot uninstall the WorkflowBuilder server. Whenever you install a new version,
it automatically overwrites the existing version.
42 Workflow Developer’s Guide

Chapter 3

WorkflowBuilder GUI
This chapter describes the various GUI elements contained in WorkflowBuilder. The actual
procedures for using these features are contained in Chapter 4, “Using WorkflowBuilder,”
and Chapter 5, “WorkflowBuilder Tutorial.”

Toolbars

WorkflowBuilder contains the following four toolbars:

• Menu

• Task

• Alignment

• Zoom

To display a toolbar, select it from the View menu. You can drag a displayed toolbar
anywhere on your desktop.

Note: When you move a toolbar outside the WorkflowBuilder GUI, it becomes a floating
palette and displays a title bar with a close button (X). Clicking the close button hides
the toolbar; it does not return it to its default location in the WorkflowBuilder GUI.
To return the toolbar into view, select Tools > Customize. Select the Toolbar tab
and check the box next to the corresponding toolbar.
WorkflowBuilder User’s Guide 43

WorkflowBuilder GUI
The Menu Toolbar

The Menu toolbar contains shortcuts for basic file operations (new, open, and save), edit
operations (cut, copy, and save), and print.

The Tasks Toolbar

The Tasks toolbar enables you to change your cursor to the selection pointer, place text labels,
transition lines, tasks, and conditions on your canvas.

The Alignment Toolbar

The Alignment toolbar is activated when you select two or more objects. Objects are aligned
relative to the last object selected. The options are top-, center-, and bottom-aligned on the
horizontal axis, and left-, center-, and right-aligned on the vertical axis.
44 WorkflowBuilder User’s Guide

The View Menu
The Zoom Toolbar

The Zoom toolbar contains buttons to undo an action or redo an undone action. It also
contains three zoom buttons:

• Zoom

– Click Zoom (magnifying glass icon).

– Move the magnifying glass cursor over the object you want to view.

– Left click to zoom in (increase magnification), right click to zoom out (decrease
magnification).

• Zoom to Fit

– Click Zoom to Fit to resize your view so that all objects are magnified to the maximum
possible size within the boundary.

• Zoom to Fit Selected Objects

– Select the objects on the canvas you want to fit in your current view.

– Click Zoom to Selection. The view is resized so that the selected objects appear
magnified to the maximum possible size that keeps them within the boundary.

The Zoom toolbar also contains a Move button (hand icon) that enables you to grip the page
and move it up or down.

The View Menu

Features in the View menu enable you to control your WorkflowBuilder environment. Use
them to open or close windows, hide toolbar items, set grid properties, zoom, and show page
boundaries.
45

WorkflowBuilder GUI
Workbook

If you have more than one workflow file open, you can use the Workbook view to display a tab
for each open workflow file. The tabs are displayed at the bottom of each file window. Click the
tab to display the corresponding file.

When Workbook is not checked in the View menu, display the file by clicking in that file's
window. You can move a file in either view by grabbing its title bar.

Sticky Mode

The Sticky Mode controls whether or not you can place multiple workflow elements (tasks,
transitions, conditions) on the canvas without re-selecting the element from the Tasks toolbar.
This option toggles between on and off positions.

• When this option is checked, each mouse-click adds another of the same element to the
canvas until you right-click.

• When this option is not checked, a mouse-click adds one element to the canvas. If you
want to add another element, you must re-selecting the element from the Tasks toolbar.

Toolbars

Unchecking any of the toolbar items in the View menu removes the toolbar from view. You
can also move the toolbars around in the WorkflowBuilder window, or display them as floating
palettes. Grab the grip on the left hand border of the toolbar to move it.

Status Bar

The status bar is located on the bottom of the WorkflowBuilder window. Uncheck Status Bar
to hide it from view.

Set Canvas Size

Canvas size is measured by page (8x11). You can set the height and wide of your workflow file
to between one and 1000 pages. If you plan to print your workflow file, you may want to limit
it to a size and layout suitable for printing.
46 WorkflowBuilder User’s Guide

The View Menu
Grid

You can create a contrasting background to help you align objects on the page. Grid properties
such as color, vertical and horizontal spacing, and snapping can be customized in the Grid
Properties dialog box.

Snap to Grid

When Snap to Grid is checked, the objects you place (or move) on the canvas align with the
upper left corner of the nearest point on the grid (points are defined by the intersection of
horizontal and vertical lines).

When Snap to Grid is not checked, you can place (or move) objects anywhere on the canvas.

Grid Properties

Use the Grid Properties dialog box to customize the grid. You can set visibility, snap options,
color, as well as the height and width of grid lines.

Zoom Normal

Select Zoom Normal to return the window to the default (100%) view.

Zoom to Fit

Select Zoom to Fit to resize the view to a percentage that allows you to view all selected
objects without scrolling. First select the objects that you want to fit in view, then select
View > Zoom to Fit.

Zoom Percent

You can resize the view by selecting View > Zoom Percent and selecting 50%, 75%, 100%,
or 200%.

Zoom Custom

You can set a custom view size by selecting View > Zoom Custom and entering the desired
magnification.
47

WorkflowBuilder GUI
Attributes Window

You can open the Attributes window by selecting View > Attributes Window. The Attributes
window is where you specify attributes and values for each workflow element (for detailed
information about attributes see “Setting Attributes” on page 60).

Output Window

You can open the Output window by selecting View > Output Window. The Output window
displays any error messages that are generated when WorkflowBuilder tries to validate your job
or workflow template. Typically, these error messages have to do with required attributes of tasks.
After saving a job or workflow template, view the Output window to ensure that no errors were
generated. If an error message is displayed in the Output window, set the required attributes and
save your job or workflow template again.

Perl Code Editor

You can open the Perl Code Editor by selecting View > Perl Code Editor. The Editor enables
you to enter custom Perl code and to create custom variables. The Perl Code Editor is described
in detail in “Defining Custom Variables” on page 88

Where To Go from Here

Having familiarized yourself with the WorkflowBuilder GUI features described in this chapter,
you can proceed to either of the following chapters:

• Chapter 4, “Using WorkflowBuilder” contains reference material and procedures for
viewing and modifying sample workflow templates, creating your own custom workflow
templates, setting attributes and variables, and transferring finished templates to your
TeamSite server.

• Chapter 5, “WorkflowBuilder Tutorial” contains a step-by-step tutorial for building a new
workflow template based. Many of the features presented in the tutorial are easier to
understand within the context of creating a complete workflow template, but it does not
describe every feature included in WorkflowBuilder. It only describes the features that are
specific to the template being created.
48 WorkflowBuilder User’s Guide

Chapter 4

Using WorkflowBuilder
Each workflow template describes a business process that can include user tasks, group tasks,
and a wide variety of automated tasks. Using WorkflowBuilder, the actual creation of workflow
templates is simple—the more difficult part is negotiating the business rules with the decision
makers in your organization, and translating the logic into elements that can be represented
within WorkflowBuilder.

This chapter describes the functionality included in WorkflowBuilder including a number of
server management features. Additionally, Chapter 5, “WorkflowBuilder Tutorial” discusses
many of the same features, but describes them within the context of constructing a single
workflow project. Some features are more easily understood within the context presented by
the tutorial, but note that features not relevant to the scenario described in the tutorial are not
discussed.

Sample Workflow Templates

A good way to plan a custom workflow template is to view the sample templates shipped
with WorkflowBuilder. In addition to providing a guide for creating custom workflow
templates, these templates can be modified, saved, and sent to your TeamSite server. There
are three sample templates that include both the .wft and corresponding .wfb files. Both
of these files are required to display a template in WorkflowBuilder. These three files are
installed by the WorkflowBuilder installation program and are located by default in
C:\Program Files\Interwoven\WorkflowBuilder\examples.
49

Using WorkflowBuilder
Viewing and Modifying Example Templates in WorkflowBuilder

You can open any existing workflow template file (.wft) that has a corresponding image
file (.wfb) and display it in WorkflowBuilder. Complete the following procedure to view a
workflow template file.

1. Select File > Open Workflow.

The Open window is displayed.

2. Navigate to the examples folder
(C:\Program Files\Interwoven\WorkflowBuilder\examples).

The three sample .wft files and corresponding .wfb files installed with WorkflowBuilder
are displayed.

3. Select one of the .wft files and click Open.

The Login dialog box is displayed.

4. In the Login dialog box, enter your login information, or choose Offline Mode (see
“Logging In” on page 53).
50 Workflow Developer’s Guide

Creating New Jobs and Workflow Templates
The selected file is displayed.

Note: If you open more than one file, each file is stored on a tab view that can be selected
at the bottom left of the canvas (as shown in the preceding figure).

5. Optionally, modify any of the elements, transitions, attributes, or variables; then select
File > Save As and create a new template.

Creating New Jobs and Workflow Templates

When you create a workflow template you add elements such as tasks and transitions. Each
element has a series of attributes which must be defined. Some of these attributes are mandatory
and some are optional. Transitions between tasks specify when and how the next task in the
flow is signaled.

After completing and saving workflow templates, you can send them to your TeamSite server.
For information about transferring your workflow templates to TeamSite, refer to “Sending
Workflow Templates to the Server” on page 64.

Multiple File Tabs
51

Using WorkflowBuilder
Your workflow template can describe a general workflow model, or it can describe a specific
job. The difference between these two is in the way attributes are set.

To create a new job or workflow template:

1. Select File > New Workflow.

2. In the Login dialog box, enter your login information, or choose Offline Mode (see
“Logging In” on page 53).

3. Edit the workflow template:

Select View > Attributes Window to display the Attributes window so you can set attributes
on the elements you place in your workflow template. If attributes are set with user variables
(see “Setting Variables” on page 61), the file will be a workflow template which may be
invoked through the New Job menu item or the Submit button in the TeamSite GUI. If
attributes are not set with user variables, the file will describe a specific job.

(Optional) Select View > Output Window to open the Output window to view validation
comments as you work.

4. Select elements from the toolbar and place them on the canvas in the order you want (see
“Placing Tasks on the Canvas” on page 56 and “Drawing Transitions” on page 56).

5. Set attribute values for each element (see “Setting Attributes” on page 60).

6. When you are done, select File > Save. and check the Output window to make sure there
are no validation errors. You can then send your workflow template or job specification file
to the TeamSite server.
52 Workflow Developer’s Guide

Logging In
When you save a new workflow template, two files are created: a .wft file, and a .wfb file
which contains the workflow diagram graphic.

A completed workflow template

Logging In

Each time you create or open a workflow template, WorkflowBuilder asks whether you want to
log in or work offline. Logging in to WorkflowBuilder allows you to receive information from the
TeamSite server to use in your job or workflow, such as lists of users, TeamSite areas where you
can create tasks, and lists of available files. If you have a network connection to the TeamSite
server, you should log in. If you do not have a network connection, you can work in Offline Mode.

Offline mode enables you to use WorkflowBuilder even when you do not have access to a
TeamSite server. However, to use the workflow templates you generate, you will eventually
need to be able to connect to the TeamSite server. When you work in offline mode, you do
not have access to TeamSite-specific information, such as the lists of users or TeamSite areas.
53

Using WorkflowBuilder
You can generate workflow templates that do not include this information when you work in
offline mode, then update them at a time when you have a connection to the TeamSite server.

To log in (online mode):

1. Select File > Select Workflow or File > Open Workflow.

The Login dialog box is displayed:

The WorkflowBuilder login dialog

2. Enter your TeamSite username and password.

3. If your TeamSite server is running on Windows NT or Windows 2000, enter your domain
in the Domain field.

4. Enter the name of the TeamSite server, or choose it from the pull-down menu if you have
connected to it before.

5. Enter the port number where you connect to your web server.

Port 80 and Port 81 are valid entries.

6. Click OK.

The name of the TeamSite server and the port number are displayed in the title bar.

To work in offline mode instead, click Offline Mode.
54 Workflow Developer’s Guide

Editing Existing Workflow Templates
Editing Existing Workflow Templates

You can edit workflow templates that have been created using WorkflowBuilder. You cannot use
WorkflowBuilder to edit workflow templates that have not been created using WorkflowBuilder
because these files do not contain a workflow diagram.

To open a workflow template:

1. Select File > Open Workflow.

2. Navigate to the workflow template you want to edit, and click Open.

3. In the Login dialog box, enter your login information, or choose Offline Mode.

The file will open in WorkflowBuilder.

4. Edit the workflow template:

Select View > Attributes Window to display the Attributes window so you can set attributes
on the elements you place in your workflow template.

(Optional) Select View > Output Window to open the Output window to view validation
comments as you work.

5. Select elements from the toolbar and place them on the canvas in the order you want.

6. Set attribute values for each element.

7. When you are done, select File > Save. and check the Output window to make sure there are
no validation errors. You can then send your workflow template or job to the TeamSite server.
55

Using WorkflowBuilder
Placing Tasks on the Canvas

To place an object on the canvas:

1. Select an object from the Tasks Toolbar.

When you move the pointer to the canvas, a graphic icon is displayed under it to
indicate that a mouse click will place an object on the canvas.

2. Click on the area of the canvas where you want to place the object.

Note: If Sticky Mode is on (View > Sticky Mode) each click adds another of the same
object to the canvas until you right-click.

Drawing Transitions

Transitions indicate the flow from one task to the next. There are four types of transitions:
Successor, Timeout, Reset, and Inactivate (as described on page 20). You can qualify transitions
by using conditional activation elements such as AND, OR, or NOT.

When drawing transitions, use the Straight Transition button to draw straight lines and the
Segmented Transition button to draw a transition around other objects in your diagram.

To draw a transition:

1. Using the Transition buttons in the Tasks Toolbar, select the type of line you want to draw
(either straight or segmented). When you move the mouse arrow onto the canvas, it changes
to a plus sign ().

2. Click a connection point of the task you want to transition from. When you see the cursor
change to crosshairs (), you can click to anchor your transition line.

3. Click a connection point of the task you want to transition to.

Note: A segmented transition provides two joints on the line between the anchor points.
Use these joints to position the line around other objects on the canvas.

4. When you are done drawing your transition, right-click to reset your mouse to the pointer.
56 Workflow Developer’s Guide

Drawing Transitions
When any task (other than the end task) is completed, the task owner is presented with
options for triggering one or more successor sets. In WorkflowBuilder, the ports on the task
icon represent successor sets. The maximum number of successor sets that a task can have
when created using WorkflowBuilder is eight (there are eight ports per icon). Each successor
set can have one or more tasks in them. Therefore, when a task is completed, the user is
provided with an option of selecting a successor set. When a selection is made, all the tasks
in that successor set are started.

In the following graphics, note that the transaction between the Review User Task and its
successor tasks (Submit to NJ and Submit to FR) originate from different points.

• In the graphic on the left (where tasks originate from different ports on the “Review” User
Task), when the “Review” User Task is completed, the task owner is given the choice to
select which of the two Submit successor tasks must be completed. The selected task is
started, and the task not selected does not get started.

• In the graphic on the right (where tasks originate from the same point on the “Review” User
Task), when the “Review” User Task is completed, the task owner is given only one choice. It
differs from the other example in that Submit successor task is actually a set of two tasks that
must both be completed. Therefore, when the task owner selects the only option, both tasks
are triggered.

Submit (successor) tasks originate from
different ports on the “Review” User Task.

Submit (successor) tasks originate from
the same port on the “Review” User Task.

Result: the user chooses which one of the
two successor tasks gets started.

Result: both of the two successor tasks
get started.
57

Using WorkflowBuilder
In the workflow segment shown in the graphic, the User Task calls for a review of some work
done by an author. The reviewer (typically an Editor) has the choice of approving the work
and creating a nested job (Submit to NJ) or approving the work and submitting it for final
review (Submit to FR). (Actually there is a third option: the “Review” User Task has a Reject
arrow originating from the lower left port of the task icon but is cropped out of the image.)

Adding Text Labels

You can add text labels to objects on the canvas. Text labels, unlike name and description
attributes, allow you to enter an unlimited number of characters. You can use labels to add a
descriptive name or explanatory notes.

To add text labels:
1. Click the text label button in the Tasks Toolbar.

2. Click on the canvas where you want to place the text label.

A text area appears with selection boxes around it where you click.

3. To edit the text of the label, move your cursor into the boundaries of the text label and
double-click.

4. Right click once when you are finished placing text labels on the canvas.

Moving Objects

You can place objects anywhere on the canvas. You can also use the alignment buttons in the
toolbar to align objects on the canvas.

To move an object on the canvas:

1. Move the mouse pointer over the object you want to move. A multidirectional arrow is
displayed at the tip of your pointer.

2. Click and drag the object to where you want to place it.
58 Workflow Developer’s Guide

Selecting Multiple Objects
Selecting Multiple Objects

To align objects on the canvas, you must select more than one object. You can also select multiple
objects and drag them around the canvas.

To select multiple objects:

• Hold down the Shift key on your keyboard and click on the objects you want to select. When
an object is selected, selection boxes appear around the object.

A selected task

Aligning Objects

You can align objects on the canvas by using the alignment buttons in the toolbar.

Option Description

 Align Top Aligns the top of objects with the top of the last object selected.

 Align Horizontal Centers
Aligns the horizontal center of objects with the center of the
last object selected.

 Align Bottom Aligns the bottom of objects with the bottom of the last object
selected.

 Align Left Aligns objects with the left side of the last object selected.

 Align Vertical Centers
Aligns the vertical center of objects with the center of the last
object selected.

 Align Right Aligns objects with the left side of the last object selected.
59

Using WorkflowBuilder
To align objects:

1. Select two or more objects that you want to align. The alignment buttons in the toolbar
become active.

Note: All objects selected will be aligned relative to the object you select last.

2. Use the alignment buttons in the toolbar to align the objects.

Setting Attributes

To set attributes of a task or transition:
1. Select the arrow in the toolbar.

2. Click the task or transition whose attributes you want to select.

3. Click the Attributes tab in the left-hand pane. The attributes for that task or transition are
displayed in the Attributes window.

4. Click the Value column of the attribute you want to set. Some attributes can be set using
a pull-down menu (for example, AreaVPath). If you are connected to the TeamSite server
you can set some attributes using the ... button (for example, AreaVPath or Owner).
Other attributes must be typed (for example, Description).

If you want to use a variable for the value of this attribute, select its name from the
pull-down menu.

If you want to use information from the TeamSite server, click the ... button and select the
value you want from the list that appears.

If you want to type the value in directly, double-click on the Value column of the attribute
you want to set, and enter the value. Note that some attributes cannot be set this way (for
example, AreaVPath).

All workflow templates must contain at least one Task with the Start attribute set to Yes.
Note that a template can contain multiple Start attributes. For example, consider a job that,
upon being instantiated, needs to send different pieces of email to four different people and
run a process that generates one of the files to be manipulated during the workflow process.
60 Workflow Developer’s Guide

Setting Variables
Since none of these tasks have a dependence on the others you can run them in parallel, each
with its own Start attribute.

Tasks with Start attributes are displayed using a green text box across the top of the task icon,
as shown in the following graphic:

Also note that each template must contain an End task.

Setting Variables

WorkflowBuilder allows you to set three types of variables: system, custom, and user. You can
use these variables to specify values of attributes.

Creating System Variables

To set a system variable:

1. Click the Variable tab in the Attributes window.

2. Double-click an entry in the Name column. Enter the name of your variable.

3. Double-click the corresponding entry in the Value column. Select System Variable from
the pull-down menu.

4. The Select System Variable window will appear. Select the system variable you want to use.
Click OK.

When the workflow template is transferred to the TeamSite server, the variable will be set to
the value you have selected (for example, if you named the variable userrole and selected
iw-role as the system variable, userrole would be set to the role of the user who instantiates
the job).
61

Using WorkflowBuilder
Creating Custom Variables

WorkflowBuilder includes a Perl Code Editor that enables you to add Perl code (including
custom variables) to workflow templates. This functionality is commonly used to control the
appearance of the forms associated with your template.

“Defining Custom Variables” on page 88 describes the creation a number of custom variables
within the context of the creation of an entire workflow template.

To create custom variables:

1. In the Variables window, click the Variables tab.

2. Double-click an empty cell in the Name column and enter a name for the new variable.

Note: Custom variable names should begin with a lower-case “c”, for example cCustom.
Following this convention ensures that the variables you create do not conflict with
others included with future releases of WorkflowBuilder.

3. Double-click in the Value column and select Custom from the pull-down menu.

4. Select View > Perl Code Editor to open the Perl Code Editor.

5. In the Perl Code Editor, enter the corresponding Perl code to define the variable.

Creating User Variables

To set a user variable:

1. Click the Variable tab in the Attributes window.

2. Double-click an entry in the Name column.

3. Enter the name of your variable.

4. Double-click the corresponding entry in the Value column.

5. Select User Variable from the pull-down menu.

The Specify User Variable dialog is displayed.
62 Workflow Developer’s Guide

Configuring Templates to Include Preselected Files
6. In the Name of label field, enter the text you want to appear next to this variable in the
New Job template.

The User Variable dialog

7. Optionally, enter the default value of this variable in the Default value field.

8. Optionally, click the Advanced button to display the following variable settings:

• In the Is this variable required? section, select Yes or No.

• In the Enter validation rules section, enter any rules you want to use to determine what
types of input are valid. These rules must be specified using Perl regular expressions.

• In the Specify error message section, enter the error message you want to display in the
New Job template if the job creator enters an invalid value.

9. Click OK.

Configuring Templates to Include Preselected Files

You can configure workflow templates that enable job creators to attach files to jobs when they
set job parameters in the TeamSite GUI. These preselected files are automatically attached to
each task in the job as the job transitions from task to task.

To configure templates to include preselected files:

1. In the Attributes window, click the Workflow Attributes tab.

2. In the Attribute column, double-click Preselected Files and set the value to No.

3. On the canvas, select the task that you want to be the Start task.

4. In the Attribute window, click the Attributes tab.
63

Using WorkflowBuilder
5. In the Attribute column, double-click the Start attribute and set the value to Yes.

The File attribute of the Start task is automatically set with the Perl variable
$iw_selected_files [];. WorkflowBuilder prevents you from editing the value of
the File attribute of any other task in the template after the Preselected Files workflow
attribute has been set to Yes and a Start task has been specified.

Note: Set the value of the Preselected Files attribute to No if files will be added to the job
after it has been instantiated.

Sending Workflow Templates to the Server

After you have created a workflow template, you must transfer its two associated files (the
.wft and the .wfb) to the TeamSite server and decide what constraints (if any) to place
on the file to control access to it. When the file is transferred to the server, the
available_templates.cfg file is automatically updated to reflect that this new (or
modified) workflow file is available to specified TeamSite users. The files you send to your
TeamSite server are placed in iw-home/local/config/wft/wfb.

Complete the following procedure to transfer a workflow template to the TeamSite server:

1. Open WorkflowBuilder.

2. Select File > Open Workflow.

3. Locate and select the .wft file you want to send to your TeamSite server (note that
recently opened files are available on the File menu).

The Login dialog box is displayed.

4. Log in to your TeamSite server as a Master user (for details about the Login procedure, see
page 53).

The selected file is displayed in WorkflowBuilder.

5. Select File > Send to Server.
64 Workflow Developer’s Guide

Sending Workflow Templates to the Server
The Workflow Constraints dialog box is displayed with the WFT_Type tab activated.

Workflow Constraints Dialog Box

6. Click OK to accept the default constraint settings (by default, all users may use all workflow
templates on all branches) or define a constraint for the selected workflow file as described in
“Workflow Template Constraints” on page 66.

7. Choose the type of job your workflow template will create (New Job or Submit Job).

8. Click OK.

The available_templates.cfg configuration file is updated on your TeamSite server.
The transferred workflow template is available to users connecting to the server using the
TeamSite browser-based GUI.

Note: If you have transferred a job specification file (a file that describes a particular job),
the job is instantiated immediately.

For information about creating jobs that use your custom workflow templates (and also the
provided templates), refer to the TeamSite User’s Guide that corresponds with your client platform.
65

Using WorkflowBuilder
Workflow Template Constraints

TeamSite enables you to control access to specific workflow templates by setting constraints
on the workflow template files when they are published to the TeamSite server. A constraint is
constructed by selecting an entry from each of the following tabs in the Workflow Constraints
dialog box:

• Workflow Template Type (WFT_Type)

• Users

• Branch

The Workflow Constraints dialog box is displayed when you send your workflow template files
to your TeamSite server (see “Sending Workflow Templates to the Server” on page 64).
These constraint types are described in the following sections and the procedure for creating
workflow constraints begins on page 68.

Workflow Template Type Constraints

The WFT_Type tab of the Workflow Constraints dialog box enables you to determine how
each type of workflow template is invoked (for example, through the Submit or New Job
commands from the TeamSite GUI). By default, you can control access to the selected workflow
template file to following types:

• all—Valid for any type of job.

• assign—Valid only when you do an Assignment of a file to a user.

• iwcs_new_job— Valid when you select the New Job option using Interwoven
Content Express.

• new_job— Valid when you select the New Job option from the TeamSite GUI to start a
new workflow.

• new_TFO_job—Valid when you select the New Job option in TeamSite Front-Office.

• submit—Valid when a Submit is performed from the TeamSite GUI.

• tt_data—Specifies this workflow file be invoked when closing a TeamSite Templating DCR.

• tt_deletedcr—Specifies this workflow file be invoked when deleting a TeamSite
Templating DCR.
66 Workflow Developer’s Guide

Workflow Template Constraints
Note: You can add your own custom workflow types by clicking Add New Type and entering
a new type name in the window that is displayed. The new type is added to the list
when you click OK.

The WFT_Type tab also enables you to assign a title to the workflow template file. The Title
field defaults to the file name given when the file was created or saved in WorkflowBuilder, but
can be changed by editing the name in the Workflow Constraints dialog box. After sending the
template to the server, this title is displayed in the list returned by the New Job or Submit Job
functionality of the TeamSite browser-based GUI.

For example, if you selected new_job as the workflow type, and entered a title of New Custom
Workflow, the title is displayed as an option when the end-user selects File > New Job in the
TeamSite GUI.

Template title displayed in New Job window of the TeamSite GUI

The WFT_Type tab also contains an Overwrite Existing File option that enables you to overwrite
workflow template files already on the server with updated versions of the same file.

User Constraints

The Users tab of the Workflow Constraints dialog box enables you to specify which users and
types of users (defined by TeamSite roles) can access the workflow template file being sent to
your TeamSite server.
67

Using WorkflowBuilder
The Users tab displays the users stored in each of the four TeamSite Roles files (admin.uid,
author.uid, editors.uid, and master.uid). For more information about defining and
managing TeamSite Users, refer to the TeamSite Administration Guide.

Branch Constraints

The Branch tab of the Workflow Constraints dialog box enables you to specify from which
branches the workflow template can be accessed.

Note: If you do not specify a branch constraint, the template is available from all branches.

Defining a Workflow Constraint

Complete the following procedure to define a workflow constraint for a template file.

1. Open a completed workflow template file from within WorkflowBuilder.

2. Log in to the TeamSite server where you want to send the file.

3. Select File > Send to Server.

The Workflow Constraints dialog box is displayed with the WFT_Type tab activated and the
file name used as the default title.
68 Workflow Developer’s Guide

Workflow Template Constraints
4. Select the type of template you are sending to the server (the eight default types are defined
on page 66).

This selection determines how the workflow template is invoked.

5. Optionally, enter a new title for the template in the Title field.

The entry in the Title field is displayed in the TeamSite GUI when the end-user selects the
“type” of activity associated with the selection made in the previous step.

6. Click the Users tab.

a. From the Role drop-down menu, select the Role of the individual user or group of users
to whom you want to allow access to this type (selected in step 4) of workflow file.

The Available Users list displays all the users with an entry in the Role file that
corresponds with your selection. In this example the Editor role is selected.

b. Click Select All or an individual user (you can use Shift+Click to select multiple users)
from the Available Users list.

c. Click >> to send the selected users to the Included Users list.

In this example, three editors (Bob, Jerry, and Phil) were added to the Included Users list.
69

Using WorkflowBuilder
7. Click the Branch tab.

a. In the Branch Expression field, type the name of the branch where you want this template
to be available, for example, main/PressRelease.

Note: This branch must already exist on your TeamSite server. This procedure does not
create the branch.

b. Click Add Branch.

The branch you entered is displayed in the Branch List.

c. Repeat step a and step b for each branch where you want this template to be available.

d. In the Branch List, highlight all the branches where you want this template to be available
(you can use Shift+Click to select multiple branches).

e. Click OK to send the template to your TeamSite server with the constraints you just defined.

If you need to modify the constraints of a template, open it in WorkflowBuilder (either a local
copy or by doing File > Get From Server) and repeat this procedure this time ensuring the
Overwrite Existing File option is checked on the WFT_Type tab.
70 Workflow Developer’s Guide

Retrieving Files from the Server
Retrieving Files from the Server

You can retrieve copies of workflow template files already transferred to your TeamSite server
using WorkflowBuilder. This functionality downloads a copy of both the .wft and the .wfb files
to any client machine with WorkflowBuilder installed. After opening one of these files you can
modify it and repost it to the server, or do a File > Save As to use it as the foundation for creating
a new workflow template.

Note: You can only retrieve active templates from the TeamSite server. If the file you want to
retrieve is not an active template, you must complete the procedure described on page 72
to change the template’s state to active

Complete the following procedure to copy workflow templates from your TeamSite server.

1. Select File > New Workflow to display the Login dialog box.

2. Log in to the server where the workflow template you want to retrieve is stored.

3. Select File > Get From Server.

The Copy Template from Server dialog box is displayed.

4. Select the template you want to copy to your client machine.

The path to the selected file and it’s title are displayed next to the corresponding labels.
Note the file specifies the .wft extension but both the .wft and the .wfb files are
downloaded.
71

Using WorkflowBuilder
5. Click Browse to display the Save As dialog box.

a. Enter a name for the files in the File name field.

The name selected in this step is used for both template files: one with a .wft extension
and one with a .wfb extension.

b. Select the location where you want to store the two template files.

c. Click Save.

The path and the file name you selected are displayed in the Save As field of the Open
Selected Template dialog box.

6. Click OK.

Deleting Files from the Server

You can delete workflow templates from your TeamSite server from within WorkflowBuilder.
This functionality deletes both the .wft and the .wfb files from the server. WorkflowBuilder’s
Delete Templates dialog box also includes functionality for undeleting files mistakenly deleted
and changing the state of a workflow template on your server (valid states are Active and Inactive).

State changes are written to the available_templates.cfg file, and are controlled by the
include attribute. Active workflow templates have the include attribute set to yes. Inactive
workflow templates are set to no. The following line from the available_templates.cfg
file shows the state of a file named LegalApproval.wft:

<template_file active=“yes” name=“LegalApproval” path=“wfb/LegalApproval.wft”>

Complete the following “procedure to either delete workflow template files from your TeamSite
server or to change their current state.

1. Select File > New Workflow to display the Login dialog box.

2. Log in to the server where the template files you want to delete are stored.

3. Select Tools > Delete Templates.
72 Workflow Developer’s Guide

Deleting Files from the Server
The Delete Templates dialog box is displayed.

4. Delete a workflow template from the TeamSite server:

a. Set the Status field to correspond with the state of the file you want to delete (either
Active or Inactive).

The list of workflow templates displays all the files with the selected status. Note that
the list specifies the .wft extension but both the .wft and the .wfb files are deleted.

b. Select the file you want to delete.

The path to the selected file and it’s title are displayed next to the corresponding labels.

c. Check the Delete From Server box.

d. Click OK.

5. Change the state of a workflow template on the TeamSite server:

a. Set the Status field to correspond with the current state of the file you want to change
(either Active or Inactive).

The Templates list displays all the files with the selected status.

b. Select the file whose status you want to change.

The path to the selected file and it’s title are displayed next to the corresponding labels.
73

Using WorkflowBuilder
c. Ensure the Delete From Server check box is cleared.

d. Click OK.

The selected workflow template’s entry in available_templates.cfg is updated to
reflect the change.

Note: Selecting Tools > Undelete Templates will undo either of these actions: it undeletes
the selected file if the Delete From Server check box is checked, or reverts to the
previous state of the file if the check box is cleared.

WorkflowBuilder Error Codes

The following error codes are displayed by WorkflowBuilder under the specified condition.

Note: Double clicking on a WorkflowBuilder error message displays the task the error
occurred in if the error output window is docked (that is, not “floating”).

Condition Error Message

FAILURE Unknown Reason

WFB_SUCCESS Success

READ_ERROR Failed to read the complete file

WRITE_ERROR Failed to write the compete data to the file

FILE_EXISTS File already exists

INVALID_FILEPATH Invalid file path

INSUFFICIENT_PERMISSION Permission Denied

LOGIN_FAILED Login failed

INVALID_SESSION Session invalid

USERDATA_NOT_AVAILABLE Username not set

HTTP_ERROR Communication Error

UNKNOWN Unknown Error

NO_FILE_NAME Invalid File Name
74 Workflow Developer’s Guide

WorkflowBuilder Error Codes
INVALID_ROLE Invalid Role

NOT_MASTER Not Master

OPEN_ROLE_FILE_FAILED Failed to open role files

CLOSE_SESSION_FAILED Close session failed

OFF_LINE Off Line

MEMORY_ALLOCATION_FAILED Memory allocation Failed

ACCESS_DENIED Access Denied

DISK_FULL Disk Full

WFB_EROFS TeamSite server is frozen

EMPTY_DIRECTORY Directory is empty

INVALID_ERROR_CODE Error code is invalid

XML_PARSE_ERROR XMl Parse Error

SERVER_NOT_INSTALLED Server Component of WFB is not installed

INVALID_SERVER_ID Invalid Server ID: TeamSite

FAILURE_GETTING_ARCHIVE_NAME Failure Getting Archive Name: TeamSite

FAILED_BRANCH_ITERATION Failed Branch Iteration: TeamSite

NO_BRANCH_NAME Branch Without A Name!!!: TeamSite

FAILED_WORKAREA_ITERATION Failed Workarea Iteration: TeamSite

NO_WFB_FILE The WFB for this template is not available

NO_WORKAREAS No Workareas

Condition Error Message
75

Using WorkflowBuilder
76 Workflow Developer’s Guide

Chapter 5

WorkflowBuilder Tutorial
This tutorial shows you how to create a workflow template and make it available to end-users
logged in to your TeamSite server. Use this tutorial to learn the basic skills you will need
to develop workflow templates and job specification files, and to learn about some of the
features available in WorkflowBuilder

For more information about workflow templates and job specification files, see Chapter 7
and Chapter 8.

By the end of this tutorial, you will learn how to perform the following tasks:

• Create variables and specify attributes.

• Use custom variables.

• Control the appearance of the New Job form associated with your template.

• Make your workflow template available to job creators.

• Specify where your templates are invoked and who can invoke them.

The concepts and procedures included in this tutorial are designed to get you through the
creation of your first actual workflow template. Some features that are not specific to the
creation of this project are not explained. These options—and other advanced WorkflowBuilder
features—are described in detail in other chapters of this book.
77

WorkflowBuilder Tutorial
Prerequisites

This tutorial assumes the following:

• TeamSite and WorkflowBuilder Server are installed and configured as described in the TeamSite
Administration Guide, and Chapter 2 of this manual on a system dedicated for WorkflowBuilder
training.

• WorkflowBuilder client is installed as described in Chapter 2.

• You have Master privileges in TeamSite on the system dedicated for WorkflowBuilder training.

• You have the TeamSite server name and the Interwoven Web daemon (iwwebd) port number
available.

• You are familiar with basic TeamSite administration tasks (or have access to the TeamSite
documentation).

Setting up the Tutorial Environment

1. Add yourself and a fictional user to the Master role file in TeamSite.

See the TeamSite Administration Guide for instructions about adding users to TeamSite.

2. Establish two branches: main/WFB_training1 and main/WFB_training2.

See the TeamSite Administration Guide for instructions about creating branches.

3. In each branch create workareas for yourself and the fictional user.

See the TeamSite Administration Guide for instructions about creating workareas.

4. In your workarea on the main/WFB_training1 branch, create a file.

This file can be any file format and does not need to contain content. It will be used later in
the tutorial to show how workflow developers can enable job creators to specify, when a job
is created, which files they want attached to all of the tasks in the job.
78 Workflow Developer’s Guide

Tutorial Overview
Tutorial Overview

In a real-world implementation, the development and use of WorkflowBuilder workflow
templates follows this pattern:

• Development—A workflow developer creates a workflow template that describe the flow
of tasks in a particular job.

• Deployment—The workflow developer makes the workflow template available to job
creators by adding the template to the TeamSite server.

• Job Instantiation—In the TeamSite GUI, a job creator selects the template that describes
the job to be created. A New Job form is displayed into which the job creator enters data
specific to that job.

Although this tutorial only covers the development and deployment phases, the following
sections use the tutorial project to describe the three phases of workflow development and use
so that you can gain a broad understanding of this process.

Development

In this tutorial you, the workflow developer, will develop a template that describes a job
composed of these tasks:

• Unlock—If files have been attached to the job by the job creator, they are unlocked.

• Author Work—A task to edit files appears in an Author’s To Do List in the TeamSite GUI.
The Author completes the requested task and marks it Done.

• Review—The job transitions to a reviewer who chooses to either:

– Reject the Author’s changes and return the job back to the Author.

– Approve the Author’s changes.

• Submit to New Job or Submit to Final Review—Upon approval of the Author’s changes,
the reviewer chooses to either:

– Submit the changes and transition the job to a nested workflow. For details about nested
workflows, see Appendix B, “Creating a Nested Job.”

– Submit the changes and transition the job directly to a final reviewer.
79

WorkflowBuilder Tutorial
• Final Review—Depending on the action taken by the first reviewer, one of two things will
happen:

– The job described in the nested workflow is started. After that sub-workflow ends, the job
transitions to the final reviewer.

– The job transitions directly to the final reviewer.

• EndTask—The job ends upon approval by the final reviewer.

The completed tutorial project should appear as follows:

Completed tutorial project

Output windowAttributes window with
Variables tab selected

Perl Code

Canvas

Editor
80 Workflow Developer’s Guide

Tutorial Overview
Deployment

When the Author Assignment with Nested Job template is complete, you will send it to the
TeamSite server, at which time you will specify:

• Title of the workflow

• Type of workflow it is

• Which users can access the template

• Branches where the workflow can be run

Instantiation

When job creators initiate a new job, the creator first selects a template in the TeamSite GUI
then fills in the required job parameters (such as, job description, task owner, and so on) in the
New Job form.

You will configure the tutorial workflow template in such a way that some job parameters will
be extracted automatically by the template, and others must be supplied by the job creator.

Additionally, your workflow template will contain a custom variable that changes the
appearance of the New Job form under certain conditions.

• If the job creator has attached pre-selected files to the job, the variable automatically extracts
the vpath to the end user’s workarea. In this case, the New Job form does not contain input
fields for branch and workarea information.

• If files have not been attached, this information cannot be automatically extracted, so the job
creator must specify branch and workarea information in the New Job form (see Figure 2).

You can control such aspects of New Job forms as:

• The conditions under which a form element is displayed.

• The type of form element that is displayed for any given line of input (a text area, for instance,
instead of a text field.)

• The label that is displayed for each form element.
81

WorkflowBuilder Tutorial
New Job form

Creating a New Workflow

To complete this tutorial, you must work in Online mode. For details about Online and
Offline mode, “Sending Workflow Templates to the Server” on page 64.

To open the tutorial and begin your project:

1. Launch WorkflowBuilder.

Select Start > Program Files > Interwoven > WorkflowBuilder.

The Login dialog box is displayed.

2. Enter the following information in the Login dialog box:

– User Name—Your TeamSite user name.

– Password—Your TeamSite password.

– Domain—The domain where the TeamSite sever you are accessing resides. Contact
your TeamSite administrator if you do not know the domain where your TeamSite server
resides.

– Server Name—The name of the TeamSite server.

– Port Number—The Interwoven Web daemon (iwwebd) port number.

3. Click OK.

These two input fields are conditional. That is,
they appear only when a certain condition is
met; in this case it is when the job creator has
not attached files to the job.
82 Workflow Developer’s Guide

Creating a New Workflow
4. Select File > New Workflow.

The attributes window is displayed on the left and the canvas on the right.

5. Place these tasks and transitions on the canvas so that your workflow diagram is identical
to the one in figure 3:

– Task 1—External task

– Task 2—User task

– Task 3—User task

– Task 4—Submit task

– Task 5—Submit task

– Task 6—User task

– Task 7—NWF (New Workflow) task

– EndTask

See “Placing Tasks on the Canvas” on page 56 for information about placing objects on
the canvas.

Tutorial workflow diagram
83

WorkflowBuilder Tutorial
Variables Overview

The variables you create in this section will be used to specify task and workflow attributes in
the following sections. Create these variables in the Variables tab of the Attributes window
(see “Completed tutorial project” on page 80.)

• sOwner—System variable. Specifies the owner of the job by automatically extracting the
user name of the job creator from the job creator’s system.

• uDescription—User variable. Creates an input field in the New Job form where the job
creator can enter a description of the job.

• cArea_VPath— Custom variable. Extracts the vpath information if pre-selected files are
attached to the job. Also affects the appearance of the New Job form.

• cUnlockFile—Custom variable. If files are attached to the job, this variable unlocks them.

• uAuthor—User variable. Specifies the owner of the Author_Work task.

• cNested_Job—Custom variable. Specifies which .wft file to run within the encapsulating
job.

• cTextArea—Custom variable. Changes the New Job form so that a text area is displayed
as the input field for a user variable rather than the default input field.

Naming Conventions

Each variable begins with a lower-case letter that corresponds to the type of variable it is (“s”
for System, “u” for User, and “c” for Custom). It is recommended that you use this convention
when naming the variables you create. You should also avoid giving variables names identical
to attribute names.

Custom Variables

WorkflowBuilder enables you to add Perl code to workflow templates so that you can enhance them
with custom variables. “Defining Custom Variables” on page 88 includes the Perl code needed
to define the custom variables in this tutorial.

For more information, see “Variables” on page 34.
84 Workflow Developer’s Guide

Variables Overview
Creating the sOwner Variable

To create the sOwner variable:

1. In the Attributes window, click the Variables tab.

2. In the Name column, double-click in an empty cell.

3. Enter sOwner.

4. Click in the corresponding row in the Value column.

5. Select System Variable from the drop-down menu.

The Specify System Variable dialog box is displayed.

6. In the Specify System Variable dialog box, select iw_user.

7. Click OK.

Creating the uDescription Variable

To create the uDescription variable:

1. In the Attributes window, ensure the Variables tab is selected.

2. In the Name column, double-click in an empty cell.

3. Enter uDescription.

4. Click in the corresponding row in the Value column.

5. Select User Variable from the drop-down menu.

The Specify User Variable dialog box is displayed.

6. In the Specify User Variable dialog box, enter Description in the Name of label field.
85

WorkflowBuilder Tutorial
7. In the Default value field, enter $cTextArea.

Note: The cTextArea variable is used to customize the type of form element that will
display for the uDescription user variable in the New Job form. It will not be
used to specify task or workflow attributes. You will define this variable, along
with the other custom variables, in the “Defining Custom Variables” section.

8. Click OK.

Creating the cArea_VPath Variable

To create the cArea_VPath variable:

1. In the Attributes window, ensure that the Variables tab is selected.

2. In the Name column, double-click in an empty cell.

3. Enter cArea_VPath.

4. Click in the corresponding row in the Value column.

5. Select Custom variable from the drop-down menu.

Creating the cUnlockFile Variable

To create the cUnlockFile variable:

1. In the Attributes window, ensure that the Variables tab is selected.

2. In the Name column, double-click in an empty cell.

3. Enter cUnlockFile.

4. Click in the corresponding row in the Value column.

5. Select Custom variable from the drop-down menu.
86 Workflow Developer’s Guide

Variables Overview
Creating the uAuthor Variable

To create the uAuthor variable:

1. In the Attributes window, ensure that the Variables tab is selected.

2. In the Name column, double-click in an empty cell.

3. Enter uAuthor.

4. Click in the corresponding row in the Value column.

5. Select User Variable from the drop-down menu.

The Specify User Variable dialog box is displayed.

6. In the Specify User Variable dialog box, enter Enter user in the Name of label field.

7. In the Default value field, select $authors from the drop-down menu.

8. Click OK.

Creating the cNested_Job Variable

To create the cNested_Job variable:

1. In the Attributes window, ensure that the Variables tab is selected.

2. In the Name column, double-click in an empty cell.

3. Enter cNested_Job.

4. Click in the corresponding row in the Value column.

5. Select Custom variable from the drop-down menu.
87

WorkflowBuilder Tutorial
Completed Variables tab

In the next section you will define the custom variables you just created.

Defining Custom Variables

WorkflowBuilder enables you to you to add custom Perl code. In this section you will add Perl code
that defines the custom variables that you created in the previous section:

• cArea_VPath

• cUnlockFile

• cNested_Job

• cTextArea

To add the Perl code that defines your custom variables:

1. Select View > Perl Code Editor.

2. In the Perl Code Editor, select the following text:

Put your addition to the Workflow Template here.
88 Workflow Developer’s Guide

Defining Custom Variables
3. Enter a definition for each of your custom variables as follows:

Continue the tutorial by specifying the workflow attributes of this template.

For this variable: Enter this:

cArea_VPath use TeamSite::Usertask qw(
 cleanup_paths

get_names_from_file
 get_mail_cmd
 make_branchpathlist
);

sub set_area{
 my($btag, $watag) = @_;
 my($avpath, $bpath, $wapath, $skip);
 my($iwbpath, $iwwapath) =(__VALUE__("iw_branch"),

__VALUE__("iw_workarea"));

if ((length($iwbpath)) > 0 && (length($iwwapath)) > 0){
 $bpath = $iwbpath;
 ($wapath = $iwwapath) =~ s|^\s*/.*:||;
 $wapath =~ s|/\s*$||;
 return("$wapath", "$iwbpath", "$wapath", "TRUE");
 }
 ($bpath, $wapath, $avpath) = cleanup_paths(__VALUE__("$btag"),
 __VALUE__("$watag"));

return("$avpath", "$bpath", "$wapath", "FALSE");
}

my($cArea_VPath, $branch_path, $work_area, $skip_branch) =
set_area("branch_path", "work_area");

cUnlockFile my $cUnlockFile = "$iwhome/iw-perl/bin/iwperl $iwhome/local/bin/
unlock.ipl";

cNested_Job my $cNested_Job = "$iwhome/local/config/wft/default/
author_assignment.wft";

cTextArea my $cTextArea = "<textarea rows='5' cols='40'></textarea>";
89

WorkflowBuilder Tutorial
Specifying Workflow Attributes

In this section you will specify four workflow attributes:

• Name—Specifies the name that displays in the list of available templates in the
TeamSite GUI.

• DebugMode—Specifies whether DebugMode is on or off.

• Description—Allows the job creator to enter a description of the new job.

• Owner—Specifies the owner of the new job as the current user.

These attributes specify the general parameters of the job. For details about workflow
attributes, see “Workflow Elements” on page 19.

To specify the workflow attributes:

1. In the Attributes window, click the Workflow Attributes tab.

2. In the Attribute column, select the attribute you want to specify.

3. Click in the corresponding cell in the Value column.

4. Enter the values as described in the following table:

Continue the tutorial by specifying the attributes of each task on the canvas.

To specify this attribute: Do this:

Name Enter a name, for example, MyTutorialProject.

DebugMode Select Yes from the drop-down menu.

Preselected Files Select Yes from the drop-down menu.

Variables Do not specify this attribute because you will not use
Activity variables in this tutorial.

Description Select $uDescription from the drop-down menu.

Owner Select $sOwner from the drop-down menu.
90 Workflow Developer’s Guide

Specifying Task Attributes
Specifying Task Attributes

In this section you will specify the attributes of each task. Each kind of task has a different set
of attributes. For details about task attributes, see “Task Attributes” on page 22.

As you work through this section, it might help you to refer to “Tutorial workflow diagram” on
page 83.

To specify the task attributes:

1. In the Attributes window, click the Attributes tab.

2. On the canvas, select Task 1.

3. Specify the attributes by selecting the one you want in the Attribute column, then clicking
in the corresponding cell in the Value column. Specify each attribute as follows:

To specify this attribute: Do this:

Name Enter Unlock.

Description Enter Unlock attached files.

Owner Select $sOwner from the drop-down menu.

Lock Select No from the drop-down menu.

Retry Select Yes from the drop-down menu.

Start Select No from the drop-down menu.

Note: Set this attribute to No so that in a later section
you can see how the Validate Template feature
works. In that section you will reset the value
of this attribute to what is should be—Yes.

AreaVpath Select $cArea_VPath from the drop-down menu.

Command Select $cUnlockFile from the drop-down menu.

Files You cannot set this attribute because the workflow
attribute, PreselectedFiles is set to Yes. It will be set
automatically when you complete the section “Saving
Your Template” on page 97.
91

WorkflowBuilder Tutorial
4. On the canvas, select Task 2 and specify these attributes as follows.:

5. On the canvas, select the Task 3 and specify these attributes as follows:

Variables Do not specify this attribute because you will not use
Activity variables in this tutorial.

To specify this attribute: Do this:

Name Enter Author_Work.

Description Select $uDescription from the drop-down menu.

Owner Select $uAuthor from the drop-down menu.

Lock Select Yes from the drop-down menu.

Readonly Select No from the drop-down menu.

Start Select No from the drop-down menu.

AreaVpath Select $cArea_VPath from the drop-down menu.

To specify this attribute: Do this:

Name Enter Review.

Description Enter Review.

Owner Select $sOwner from the drop-down menu.

Lock Select Yes from the drop-down menu.

Readonly Select Yes from the drop-down menu.

Start Select No from the drop-down menu.

AreaVpath Select $cArea_VPath from the drop-down menu.

To specify this attribute: Do this:
92 Workflow Developer’s Guide

Specifying Task Attributes
6. On the canvas, select the Task 4 and specify these attributes as follows:

7. On the canvas, select the Task 5 and specify the attributes as you did for the Submit_to_NJ
task in step 9 on page 93, with the following changes:

To specify this attribute: Do this:

Name Enter Submit_to_NJ. Submit_to_New_Job is too long
to display as task name, thus the abbreviation “NJ” for
“New Job.”

Description Enter ContentApproved_StartNewJob.

Owner Select $sOwner from the drop-down menu.

Start Select No from the drop-down menu.

Skip Conflicts Select No from the drop-down menu.

Skip Locked Select No from the drop-down menu.

Override Select No from the drop-down menu.

Unlock Select Yes from the drop-down menu.

SaveComments Select Yes from the drop-down menu.

AreaVpath Select $cArea_VPath from the drop-down menu.

To specify this attribute: Do this:

Name Enter Submit_to_FR. Submit_to_Final_Review is too
long to display as a task name, thus the abbreviation “NJ”
for “New Job.”

Description Enter ContentApproved_StartFinalReview.
93

WorkflowBuilder Tutorial
8. On the canvas, select the Task 7 and specify these attributes as follows:

9. On the canvas, select the last Task 6 and specify these attributes as follows:

Continue the tutorial by specifying the transitions between the tasks.

To specify this attribute: Do this:

Name Enter Nested_Job.

Description Enter Nested_Author_Assignment_Workflow.

Owner Select $sOwner from the drop-down menu.

Start Select No from the drop-down menu.

AreaVPath Select $cArea_VPath from the drop-down menu.

Wffile To set the Wffile attribute:

a. Click in the corresponding cell in the Value
column.

b. Click
A dialog box is displayed.

c. In the dialog box, select $cNested_Job from the
drop-down menu.

d. Select WF Template.

e. Click OK.

To specify this attribute: Do this:

Name Enter Final_Review.

Description Enter Final_Review.

Owner Select $sOwner from the drop-down menu.

Lock Select No from the drop-down menu.

ReadOnly Select Yes from the drop-down menu.

Start Select No from the drop-down menu.

AreaVPath Select $cArea_VPath from the drop-down menu.
94 Workflow Developer’s Guide

Specifying Transitions
Specifying Transitions

There are four types of transitions:

• Successor (default)

• Timeout

• Inactivate

• Resets

Successor transitions are not listed with the other types in the drop-down menu because
they are applied automatically when no other type is selected. For details about transitions,
see“Transitions” on page 20.

All of the transitions in this tutorial are successor transitions. However, you will specify a
name for each transition.

To specify a name for a transition:

1. On the canvas, select a transition arrow.

2. In the Attributes window, click the Attributes tab.

3. In the Attributes column, select Type.

4. Click in the corresponding cell in the Value column.

5. Enter a name for the transition. Refer to “Completed tutorial project” on page 80 for
the names for each transition.

Continue the tutorial by printing your template.
95

WorkflowBuilder Tutorial
Printing Your Template

In this section you will learn how to view page bounds, set the page size, and print your template.

To view page bounds select View > Page.

Note that the three task icons on the right flow over the boundary of the first page. For this
tutorial you’ll want to fit everything onto one page.

To fit all the icons onto one page:

1. Hold down the Shift key and select the Nested_Job, Final_Review, and EndTask tasks.

2. Drag them to the left, into the boundary of the first page.

To set the page size of the canvas:

1. Select View > Set Canvas Size.

2. In the Set Canvas Size dialog box, set the Horizontal and the Vertical page limits to 1.

3. Click OK.

The dashed line
indicates a page
boundary
96 Workflow Developer’s Guide

Saving Your Template
To print the workflow diagram:

1. Select File > Print

2. In the Print dialog box, click Print.

Continue the tutorial by saving your work.

Saving Your Template

In this section you will save your workflow file and use the Verify Template feature to
find and correct an error in the template.

When you save a workflow file, WorkflowBuilder checks for errors. If errors exist,
the Output window opens and displays information about each error (see the graphic
on page 80.) You can validate your workflow file at any time by selecting
Tools > Verify Template.

The error in this tutorial is that no task is identified as a Start task. To fix this, you will reset
the value for the Start attribute of the Unlock task to Yes.

1. Save your Template:

a. Select File > Save As.

b. In the Save As dialog box, navigate to the WorkflowBuilder-home\examples
directory.

c. Name the file completed_tutorial.wft.

d. Click Save.

The Output window opens to display an error.
97

WorkflowBuilder Tutorial
2. Fix the error:

a. On the canvas, select the Unlock task.

b. In the Attributes window, click the Attributes tab.

c. In the Attributes column, double-click Start.

d. In the corresponding cell of the Value column, select Yes from the drop-down menu.

3. Select File > Save.

The Output window lists no errors.

Now that you have verified your template and saved it, you are ready to send it to the TeamSite
server.

Sending Your Template to the TeamSite Server

When you are ready to make a template available to TeamSite users, you must transfer its
two associated files (the .wft and the .wfb files) to the TeamSite server and decide what
constraints (if any) to place on the file to control access to it. For more information about
controlling access using constraints, see “Workflow Template Constraints” on page 66.

In this section you learn how to:

• Specify a title for your template. The title is displayed in the list of available templates in the
TeamSite GUI, and can be different than the file name and the Name workflow attribute.

• Specify yourself as the only user permitted to access the template.

• Specify that the template can be accessed only from the main/WorkflowBuilder_Tutorial
branch.

To send the template to the server, you must be in online mode. If you are not already in online
mode, Select File > New to access the Login dialog box.
98 Workflow Developer’s Guide

Sending Your Template to the TeamSite Server
To send your template to the server:

1. Select File > Send to Server.

The Workflow Constraints dialog box is displayed with the WFT_Type tab activated.

2. In the Title field, enter Tutorial Template.

3. In the Type of WFT field, select all. This makes the template accessible only through the
New Job option in the TeamSite GUI.

4. Click the Users tab.

5. From the Role drop-down menu, select master.

All users with an entry in the Master role file are displayed in the Available Users field.

6. Select your user name from the list and click >> to add yourself to the list of Included Users.

Do not include the fictional TeamSite user you created when you established the tutorial
environment (see “Setting up the Tutorial Environment” on page 78.)

7. Click the Branch tab.

8. Enter main/WFB_training1. This restricts access to your the template to this branch.

Your template will not be accessible from main/WFB_training2.

9. Click OK to send your template to the server.

Finish the tutorial by testing the work you’ve done. In the next section you will invoke your
template from the TeamSite GUI and create a new job with it.
99

WorkflowBuilder Tutorial
Testing Your Work

Test your work by creating a new job with your template in the TeamSite GUI.

1. Open a browser and log in to TeamSite.

2. Navigate to your workarea on the main/WFB_training2 branch.

3. Select the file you created there (see “Setting up the Tutorial Environment” on page 78) to
attach it to the job.

4. Navigate to your To Do list.

5. Select File > New Job.

The New Job window is displayed with the Tutorial Template included in the list of
available templates.

6. Select Tutorial Template and enter a description (such as, test1.)

7. Click New Job.

A New Job form is displayed. Notice that you do not need to enter branch or workarea
data because you have pre-selected a file that will be attached to the job. Notice also that
the form element for Description is a text area and not a text field.

8. Enter a description and specify yourself as the task owner.

9. Click Run Job.

10.Navigate to the To Do List screen.

The job you just created has placed a task in your To Do list. Notice that the file you
pre-selected is included in the task.

Try to access your template from the other branch, or log out and log back in to TeamSite
as the fictional user and try to invoke the Tutorial Template as that user. If you’ve followed
the steps in this tutorial correctly you’ll find that your template is inaccessible.

Congratulations! You successfully completed the WorkflowBuilder tutorial.
100 Workflow Developer’s Guide

Chapter 6

Workflow Configuration Files
TeamSite’s workflow functionality uses three configuration files to store information about
the availability of workflow templates on your TeamSite server. These files are:

• available_templates.cfg—XML file installed as part of the WorkflowBuilder
installation procedure which stores information about the conditions under which users
can access the templates.

• available_templates.ipl—PERL file installed as part of the TeamSite installation
procedure which parses the available_templates.cfg file and returns the names
of templates that are valid for the current user.

Note: Unlike previous versions of TeamSite, the available_templates.ipl is not
user-configurable. All modifications—whether made manually with a text editor,
or with WorkflowBuilder—are made to the available_templates.cfg file.

• available_templates.dtd—File used by available_templates.cfg that
contains a collection of declarations (elements and attributes) which describe the
expected document structure.

Additionally, there are a number of workflow configuration settings that must be made in
TeamSite’s iw.cfg file.

These files are described in detail in the following sections.
101

Workflow Configuration Files
The available_templates.cfg File

As described in Chapter 4, WorkflowBuilder contains a number of server-related features that
make modifications to the available_templates.cfg file. These features enable you to:

• Send and retrieve workflow templates from the server.

• Change the state of a workflow template on the server (valid states are active or inactive).

• Delete files from the server.

• Define constraints that control access to each workflow template based on any combination
of user, role, branch, and type (how the workflow is instantiated, for example, by starting
a new job).

The available_templates.cfg is an XML file which can be modified in a text editor if you
prefer. Before making manual modifications to the file, ensure you understand the structure and
contents of the file as described in this chapter.

By default, the available_templates.cfg file is located in:

• C:\Program Files\Interwoven\TeamSite\local\config\wft (Windows servers)

• iw-home/local/config/wft (UNIX servers)

available_templates.cfg Structure

The available_templates.cfg file is basically a list of workflow templates stored on the
TeamSite server. Every workflow template referenced in the available_templates.cfg
file contains a file name, location, and title. This information is displayed using slightly different
syntax depending on whether the template was created and transferred to the server using
WorkflowBuilder, or if it is a default workflow template.
102 Workflow Developer’s Guide

The available_templates.cfg File
• Default workflow templates use the following form:

• Files transferred to the server using WorkflowBuilder use the following form:

Note: The “default” syntax does not specify that the file is active since the default setting (as
defined in the available_template.dtd file, shown on page 111) is active=“yes”.
If you use WorkflowBuilder to change the status of a workflow template, it will
update the file using the WorkflowBuilder-style syntax.

In addition to the file name, location, and title, each workflow template includes the following
four lists of rules:

• command_list

• role_list

• user_list

• branch_list

Every workflow template listed in the available_template.cfg file has a template_file
element with rules defined in corresponding subelements. Each subelement in the list indicates
if the template will be shown when the end-user input matches the element by having a value
of “yes” ("yes" indicating that the template should be listed and “no” indicating that the
template should not be listed). The template is shown in the list of available templates only if
the results of the four lists are “yes”.

Title

File Name

File Location

<template_file name='Author Submit Workflow' path='default/author_submit.wft'>

<template_file active="yes" name="Custom" path="wfb/custom.wft">

Title

File Name

File LocationStatus
103

Workflow Configuration Files
user_list element

The examples in this section describe how the user_list element works.

The following code means if the user is Joe, display the associated template, otherwise do
not display it.

<user_list>

 <user value="joe" include="yes"/>

 <user value="all" include="no"/>

</user_list>

The following code means if the user is Joe or Jane, do not display the associated template.
If it is any other user also do not display it (this is added by default, as defined in
available_template.dtd).

<user_list>

 <user value="joe" include="no"/>

 <user value="jane" include="no"/>

</user_list>

The following code means if the user is Joe, do not display the associated template. If it is
any other user, display it.

<user_list>

 <user value="joe" include="no"/>

 <user value="all" include="yes"/>

</user_list>
104 Workflow Developer’s Guide

The available_templates.cfg File
role_list element

The example in this section describes how the role_list element works.

The following code means if the user is logged in as a Master (that is, users with an entry in
the master.uid file), do not display the associated workflow template. All other roles can
access the template.

<role_list>

 <role value="master" include="no" allusers="no"/>

 <role value="all" include="yes" allusers="no"/>

</role_list>

The allusers="no" qualifies the fact that all other roles are allowed but you should have
a valid user from the <user_list> element.

In the case where <role value="all" include="yes" allusers="yes"/> then even
if you appear invalid as defined by the user element, the role element has precedence over
the <user_list> element.

branch_list element

The branch_list is similar to the user_list element, except that it has no dependencies
with role_list (this is also true of the command_list). The example in this section
describe how the branch_list element works.

Consider a user Jerome, logged in to the TeamSite GUI as described below, attempting a
submit command.

role = "master";

user = "jerome";

branch = "/default/products";

command = "submit";
105

Workflow Configuration Files
The following available_templates.cfg file is processed by the
available_templates.ipl program (the processing sequence and results of
the request are described following the file on page 107).

<available_templates>

<template_file active="yes"name="Custom"path="wfb/custom_submit.wft"/>

<command_list>

<command include="no"value="new_job"/>

<command include="yes"value="all"/>

</command_list>

<role_list>

<role allusers="no"include="yes"value="administrators"/>

<role allusers="no"include="no"value="authors"/>

<role allusers="yes"include="yes"value="masters"/>

<role allusers="no"include="no"value="editors"/>

</role_list>

<user_list>

<user include="yes"value="jerome"/>

<user include="no"value="all"/>

</user_list>

<branch_list>

<branch value="all"include ="yes"/>

</branch_list>

</template_file>

</available_templates>
106 Workflow Developer’s Guide

The available_templates.cfg File
The available_templates.ipl program checks the header of the
available_templates.cfg to find the associated DTD file. In this case, the DTD
specified is available_templates.dtd.

1. The available_templates.ipl program checks the active attribute and proceeds because
the value is "yes".

2. It then checks the command_list element.

The command rules in this example state to display the template for all types except
new_job, therefore, since the example input is command="submit", it returns "true".

3. It then checks the roles_list element.

The roles rules specify that:

• Some administrators are allowed (if they are listed in the user_list element)

• No authors are allowed

• All masters are allowed

• No editors are allowed.

This rule, when applied to the role of master in this example, returns "true".

Note: The available_templates.ipl program only checks the user_list element for
roles in which allusers="no".

4. Lastly, the branch_list element is checked.

In this example, all branches are allowed. Therefore the rules return "true", and the
template is displayed to the user Jerome.

The available_templates.ipl file is explained in detail on page 110.
107

Workflow Configuration Files
Modifying available_templates.cfg from WorkflowBuilder

The excerpt from the available_templates.cfg file on the next page illustrates a number
of points about the file’s structure and contents. It includes one of the default workflow templates
(author_submit.wft) and a template created using WorkflowBuilder called custom.wft.

The constraints placed on the custom.wft file are called out on page 109 and WorkflowBuilder’s
Workflow Constraints settings used to create them are shown below.

WFT_Type and Users Tabs of the Workflow Constraints dialog box

Note the following:

• The title Custom is entered in the Title field of the WFT_Type tab. This title and the actual
file name (custom.wft) both get referenced in the available_templates.cfg file.

• new_job is specified as the template type on the WFT_Type tab.

• The Users tab’s Role field is set to editor.

• Three users have been moved to the Included Users field. These three users must have been
previously added to the editor.uid file located in iw-home/TeamSite/conf/roles.

• No branch constraints were defined on the Branch tab.

Examine the file on the next page to see how the data entered in the Workflow Constraints
dialog box are stored in the available_templates.cfg file.
108 Workflow Developer’s Guide

The available_templates.cfg File
<?xml version="1.0" standalone="no" ?>

<!DOCTYPE available_templates SYSTEM './available_templates.dtd'>

<available_templates>

 <template_file name='Author Submit Workflow'

path='default/author_submit.wft'>

 <command_list>

 <command value='submit' />

 <command value='all' include='no' />

 </command_list>

 <role_list>

 <role value='author' include='yes' allusers='yes'/>

 <role value='all' include='no' allusers='yes'/>

 </role_list>

 </template_file>

.

.

.
<template_file active="yes" name="Custom"

path="wfb/custom.wft">

 <command_list>

 <command include="yes" value="new_job">

 </command>

 </command_list>

 <role_list>

 <role include="no" value="admin">

 </role>

 <role include="no" value="author">

 </role>

 <role include="no" value="master">

 </role>

 <role include="yes" value="editor">

 </role>

 </role_list>

 <user_list>

 <user include="yes" value="Bob">

 </user>

 <user include="yes" value="Jerry">

 </user>

 <user include="yes" value="Phil">

 </user>

 </user_list>

 </template_file>

</available_templates>

Specifies this workflow template
can be invoked through Submit

Specifies Authors can use
this workflow template

Begins a template file section (this

Specifies other roles cannot
use this workflow template

Specifies this workflow template
cannot be invoked by other means

Ends a template file section

Specifies the dtd
file used by this file

is one of the default templates)

Begins a template file section (this was created
using WFB and stored in the wfb directory)

Specifies this workflow template
can be invoked through New Job

Specifies this workflow
 template can only be

Further specifies that this
 workflow template can
only be invoked by the

Editors Bob, Jerry, or Phil

invoked by Editors
109

Workflow Configuration Files
The available_templates.ipl file

The available_templates.ipl file consists of a single Perl function that parses the
available_templates.cfg file. It compares the constraints (for example, user or branch)
defined in the available_templates.cfg file with the request being made in the TeamSite
GUI. It then decides whether or not to list a template in the TeamSite GUI.

The PERL function processes requests based on the following four input parameters:

• The command being issue (for example, new_job, submit, data_tt).

• The branch to which the user is logged on.

• The user that is requesting the list.

• The role the user has used to log into Teamsite in this session.

This enables you to create code that states: if command X is issued by user U who’s Role is
Master, and the Branch ID is B, then display templates A, B, C, and D. For example, if a
New Job command is issued by the user Joe, who is logged in with a Role of Master, display
the Author Approval and Editor Approval workflow templates.

Note: Do not edit the available_templates.ipl file.

The available_templates.dtd File

The available_templates.cfg file begins with the following prolog:

<?xml version="1.0" standalone="no" ?>

<!DOCTYPE available_templates SYSTEM './available_templates.dtd'>

It declares that the available_templates.cfg uses the available_templates.dtd
to describe the expected document structure. The available_templates.dtd file is a
collection of declarations divided into two types:

• ELEMENTS—Defines an element and what it can contain.

• ATTLIST—Defines the attributes that are allowed for an element.
110 Workflow Developer’s Guide

The available_templates.dtd File
By default, the available_templates.dtd file is installed in the same directory as the
available_templates.cfg, either:

• C:\Program Files\Interwoven\TeamSite\local\config\wft (Windows servers)

• iw-home/local/config/wft (UNIX servers)

The available_templates.dtd file defines the default behavior of the
available_templates.cfg. The file is shown on page 111.

<!ELEMENT available_templates (template_file)* >

<!ELEMENT template_file

((command_list)?,(role_list)?,(user_list)?,(branch_list)? >

<!ELEMENT path EMPTY>

<!ELEMENT command_list (command)+ >

<!ELEMENT role_list (role)+ >

<!ELEMENT user_list (user)+ >

<!ELEMENT branch_list (branch)+ >

<!ELEMENT command EMPTY>

<!ELEMENT role EMPTY>

<!ELEMENT user EMPTY>

<!ELEMENT branch EMPTY>

<!ATTLIST template_file

name CDATA #IMPLIED

active (yes|no) "yes"

path CDATA #IMPLIED>

<!ATTLIST command

value CDATA "all"

include (yes|no) "yes">

<!ATTLIST role

value (author | admin | master | editor | all) "all"

include (yes|no) "yes"

allusers (yes|no) "no">

<!ATTLIST user

value CDATA "all"

include (yes|no) "yes">

<!ATTLIST branch

value CDATA "all"

include (yes|no) "yes">
111

Workflow Configuration Files
The iw.cfg File

The iw.cfg file is the main TeamSite server configuration file. It includes configuration
settings for the way TeamSite looks and responds to various requests. By default, the file is located
in /etc. This section includes information about workflow-related settings in three parts of the
iw.cfg file:

• [iwserver]

• [iwsend_mail]

• [workflow]

For details about TeamSite configuration issues that do not concern workflow, refer to the
TeamSite Administration Guide for your server platform (Windows or Solaris).

[iwsend_mail] Parameters

The Perl script iwsend_mail.ipl was specifically designed for use within TeamSite
workflows to simplify the creation of external task scripts for email notification. Modify the
[iwsend_mail] section of your iw.cfg file to include the following lines:

[iwsend_mail]

maildomain=interwoven.com

mailserver=mail1.interwoven.com

use_mapping_file=true

email_mapping_file=c:/iw-home/local/config/wft/email_map.cfg

debug_output=c:/tmp/iwsend_mail.log

For detailed information about the iwsend_mail.ipl script, refer to Appendix A, “The
iwsend_mail.ipl Script”

[workflow] Parameters

The [workflow] section of iw.cfg contains by default three commented parameters and
their corresponding default values:

• external_task_add_filelist=false

• wftask_nesting_depth_allowed=3

• external_task_retry_wait=1
112 Workflow Developer’s Guide

The iw.cfg File
Each of these parameters also contains a commented description. To activate any of the
parameters, remove the single pound sign (#) that precedes the line. You can also change
the default setting. Ensure the double pound signs (##) preceding the description are not
removed.

[workflow]

Set 'external_task_add_filelist' to false if you want to prevent

TeamSite from adding files to the command line of external task

command callouts (recommended on WinNT/2K). Defaults to true.

#external_task_add_filelist=false

The maximum depth of nesting allowed for nested jobs (wftask);

defaults to 3. Values less than 1 are ignored.

#wftask_nesting_depth_allowed=3

Set external_task_retry_wait to the number of minutes you want the

workflow engine to wait before it re-attempts to run an external

task after failing. Defaults to 1 minute.

#external_task_retry_wait=1
113

Workflow Configuration Files
114 Workflow Developer’s Guide

Chapter 7

Workflow Template Files
This chapter describes the structure and contents of workflow template files. These files
include the sample workflow templates installed by the TeamSite installation program,
example files installed by the WorkflowBuilder installation program, and workflow templates
created with WorkflowBuilder.

Workflow Illustrated

This manual’s Introduction opens with a simplified diagram of the workflow lifecycle (page 14).
It is designed to introduce basic workflow concepts. This section includes a detailed illustration
that focuses primarily on the server processes and the interaction with the end-user (job
creators and authors). It introduces the Instantiator CGI and depicts the four other main
components involved in using workflow templates to create jobs:

• Workflow template—Defines the workflow rules through a set of workflow markups
and a set of general workflow configuration instructions. Workflow templates are typically
created using WorkflowBuilder as described in Chapter 4.

• Instantiator CGI—Interprets the workflow rules and data from end users, produces
browser graphics and prompts, generates a job specification, and instantiates the job.

• TeamSite browser-based GUI—Displays forms that prompt end-users for input.

• Job specification file—Generated by the instantiator CGI.

• Server-side workflow subsystem—Provides a framework for controlling processes
involved with these.

The following diagram shows how these components work together. Sections after the
diagram explain each diagram step and component in detail.
115

Workflow Template Files
Workflow Template Overview

Diagram Key

1. In the TeamSite GUI, an end user selects a workflow template from the File > New File,
File > Edit File, or File > Create New Job menu item. The instantiator CGI reads the file
available_templates.cfg to determine which workflow template files are available
for that given TeamSite area or file content.

2. The instantiator CGI goes to the specified workflow template file and reads the workflow
markup, which consists of Perl instructions residing in the workflow template file’s
<template_script> elements. See page 122 for details about <template_script>
syntax and usage.

3. Based on the workflow markup, the instantiator CGI creates one or more workflow forms
into which an end user can enter workflow configuration information using the TeamSite
browser-based GUI.

Workflow
Template File

• Workflow markup
• General workflow

configuration
instructions

Browser

• End user selects
template from
GUI

• End user fills in
WF form

Instantiator CGI

• Reads workflow
markups

• Generates forms
• Compares data

with WF rules
• Combines data

with WF
instructions

• Generates job
specification and
instantiates job

Job Specification

• Job-specific rules
• Can optionally be

written to an XML
file

Server-Side
Workflow
Subsystem

Runs jobs

2

1

4

6

5

7 3
116 Workflow Developer’s Guide

Workflow Illustrated
4. An end-user using the TeamSite GUI enters information in the workflow form and submits
it back to the instantiator CGI.

5. The instantiator CGI consults the rules in the workflow template file’s workflow markup
to verify the validity of the data entered by the end user. If the data meets all necessary
criteria, it is parsed by the instantiator CGI (see Step 6). If the data does not meet all
necessary criteria, the interface re-prompts the end user so that data can be re-entered
(default notification is the invalid field turning red in the workflow form).

6. After determining that the workflow form contains valid data, the instantiator CGI combines
the data with the general instructions from the workflow template file to create a job
specification (and optionally a job specification file) for this specific job. If a job specification
file is created, it is equivalent to the file you would create manually if you defined a job as
described in Chapter 8.

When a job specification file is not created (which is typically the case), the instantiator CGI
performs the functional equivalent of writing a job specification file to disk and then invoking
the iwjobc and iwinvokejob commands to instantiate and execute the job instance.

For an explanation of workflow template file structure and supported element syntax, see
“Workflow Template File Structure” on page 119. For an example of a job specification file,
see “Sample Job Specification File” on page 173

7. The job is instantiated on the server and started. These are actions you would execute
manually (via iwjobc and iwinvokejob) as described in “Running Manually Created Jobs” on
page 151.

The following sections provide more details about each diagram component.

Workflow Template File

A workflow template file is an XML file that can contain any or all of the elements that are valid
in a job specification file. These elements form the set of general workflow configuration
instructions shown in the diagram on page 116. See “Workflow Template File Structure” on page 119
for details about these elements.

In addition, the workflow template file can contain <template_script> elements and a set of
directives to define the workflow markups also shown in the diagram on page 116. All instructions
residing within a <template_script> element are interpreted by the instantiator CGI as Perl
117

Workflow Template Files
code. See “Workflow Template File Structure” on page 119 for details and a sample file
illustrating these concepts.

Instantiator CGI

TeamSite includes a standard instantiator CGI, iwwft_instantiator.cgi, to perform
the following tasks:

• Create and display the workflow information form based on information in the workflow
template file.

• Evaluate data entered by end users based on the workflow rules in the workflow template file.

• Combine user-entered data with general workflow configuration instructions to create a job
specification.

• Instantiate the job specification on the TeamSite server and start the job.

Browser Interface (GUI)

The browser-based GUI is a standard, TeamSite supported GUI through which end-users can
enter data in a workflow form.

Job Specification File

For an explanation of file structure and supported element syntax, see “Job Specification File
Structure” on page 153. See “Sample Job Specification File” on page 173 for a sample job
specification file.

Server-Side Workflow Subsystem

The server-side workflow subsystem resides on the TeamSite server and contains all the
executable files that provide workflow functionality.
118 Workflow Developer’s Guide

Workflow Template File Structure
Workflow Template File Structure

Workflow template files by default reside in iw-home/local/config/wft and end with
a .wft extension. Workflow template files may contain the following components:

• <template_script> elements containing arbitrary Perl code.

• CGI_info directives to control the look and feel of workflow forms generated by the
instantiator CGI.

• TAG_info directives to control the data collection, validation, and error messages displayed
in workflow forms.

• __ELEM__(tagname); directives to return the number of elements in a tag.

• __TAG__(tagname); directives to insert the HTML-encoded data associated with the
form POST/GET key tagname into the job specification.

• __INSERT__(string); directives to insert text into a job specification programatically.

• __VALUE__(tagname); directives to return unescaped POST/GET data associated with
$tagname.

• Other elements identical to those used by job specification files.

The following section contains an excerpt from a basic sample workflow template file, followed
by explanations of all file components (some of which are not included in the basic sample file).
A second, more sophisticated sample file (“Complex Workflow Template File” on page 137)
shows how to use more of these file components.
119

Workflow Template Files
Simple Workflow Template File

The following is a fragment from a simple workflow template file that fills in blank fields
(indicated by __TAG__ directives) with HTML-encoded CGI data.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE workflow SYSTEM "iwwf.dtd">

<template_script><![CDATA[

TAG_info(

description => "<input type='text' value='dark and stormy night'>",

job_name => "<input type='text' value='edit story'>",

);

]]></template_script>

<workflow name="__TAG__('job_name');"

 owner="__TAG__('iw_areaowner');"

 description="__TAG__('description');">

Things to note in the preceding example:

• POST/GET data keynames appear on the left hand side of the arrow in the TAG_info
directive.

• The HTML form input field that collects data for the template is located to the right of
the arrow in the TAG_info directive.

• The TAG_info directive is located within a <template_script> element.

• You can refer to POST/GET data that was not explicitly collected by the HTML form
input fields you specified in TAG_info. For example, iw_areaowner is provided by
default, so you do not need to give the template instantiator CGI an input field HTML
fragment for iw_areaname within the TAG_info directive.
120 Workflow Developer’s Guide

Workflow Template File Structure
Suppose that, in the user interface for this form, you want the field that collects data for
job_name to have a label of “Job Name” instead of “job_name”. The following template file
section would accomplish that:

TAG_info(

description => "<input type='text' value='dark and stormy night'>",

job_name => [html => "<input type='text' value='edit story'>",

 label => "Job Name",

],

);

This example illustrates the TAG_info attributes html and label. There are many more,
but all of them follow the same simple pattern:

[...some_attribute... => ...a_value...,

...another_attribute... => ...another_value...,

... and so on...
],

As described later in this chapter, the template developer can do far more sophisticated things
than just filling in the blanks. For example, you can generate workflow dynamically, and
intersperse dynamically generated workflow, data, and tags with hard-coded information. The
following sections explain the details of workflow template file components and how you can
use them to create workflow templates ranging from simple to elaborate. For another example
of how to use many of these component, see “Complex Workflow Template File” on page 137 .
121

Workflow Template Files
The <template_script> Element

A workflow template file can contain any number of <template_script> elements. Each
<template_script> element contains arbitrary Perl code that can perform the following
actions:

• Define the rules that the instantiator CGI employs to combine user-entered data with:

– hardcoded workflow XML from the workflow template file.

– programatically generated workflow XML produced within <template_script>
elements.

• Programatically generate a job specification (and/or intersperse hard-coded XML job
specification information with programatically generated XML).

• Optionally send the job specification to a file in addition to, or instead of, instantiating it
into the workflow subsystem. This can be helpful if you need to see exactly what XML is
being produced by the workflow template file and instantiator CGI.

• Define the rules that validate user-entered data.

• Define the custom error messages displayed when the template's data validation rules are
not satisfied (see “The TAG_info Directive” on page 125).

• Inspect incoming POST/GET data, and (under certain conditions) execute code on the basis
of this data. For example, rules in a <template_script> element can tell the instantiator
CGI to generate different job specifications depending on what a user’s name is.

For example, if the an Author “Andre” needs three approvers for his work, but the Author
“Jerome” needs only one approver, you can define rules in a <template_script>
element to perform this job customization automatically based on whether Jerome or Andre
is the Author.

• Merge POST/GET data with the hard-coded workflow XML from the workflow template
file.

• Determine the look and feel of the automatically generated workflow form that collects
end-user data for a job (see “The CGI_info Directive” on page 124).
122 Workflow Developer’s Guide

Workflow Template File Structure
Because TeamSite workflow templates must be valid XML documents, all content in a
<template_script> element must be declared as CDATA to protect it from interpretation
by an XML parser. For example:

<template_script><![CDATA[

 # arbitrary Perl code

]]></template_script>

Together, all of the <template_script> elements in a workflow template file form a single
Perl program. If a workflow template file contains more than one <template_script>
element, all variables, functions, and libraries set in one element are available in the others.
For example:

<...hard-coded workflow XML...>

<template_script><![CDATA[

use Lib1; # you can import libraries

sub some_function # you can define functions

{

return "Please enter beverage choice";

}

my $beverage = "tea"; # you can define variables

]]></template_script>

<...hard-coded workflow XML...>

<template_script><![CDATA[

The variable $beverage is accessible in this

section, and contains the value "tea".

The function some_function() may also be called here.

]]></template_script>
123

Workflow Template Files
The CGI_info Directive

Usage:

CGI_info(...list of key/value pairs...);

Description:

Sets various defaults that effect the look and feel of workflow forms generated by the instantiator
CGI. The CGI_info directive may only appear within a <template_script> element.
Properties that you can set are described in the following table:

Property Description

error_data_bgcolor Data field background color displayed if an end user enters invalid
data (validity is determined by the instantiator CGI). By default,
all non-empty fields are valid, but you can customize this on a
field-by-field basis. Color in this property and all other color
properties shown in this table can be specified using standard
HTML color syntax (for example, "red", "green",
"#FFFFFF").

error_label_bgcolor Label field background color displayed if an end user enters invalid
data in the data field.

error_text_color Error message text color.

valid_bgcolor Background color displayed if an end user enters valid data.

title Browser window title.

html_body_options Sets the options for the <body> element of the instantiator CGI.
For general information about <body> elements, see
http://www.w3.org/TR/REC-html40/struct/
global.html#edef-BODY

tag_table_options Sets the options for the <table> element of the instantiator CGI.
For general information about <table> elements, see
http://www.w3.org/TR/REC-html40/struct/
tables.html#h-11.2.1

pre_tagtable_html Defines what is displayed in a workflow form between the banner
and tag table areas.

post_tagtable_html Defines what is displayed in a workflow form after the tag table
area.
124 Workflow Developer’s Guide

Workflow Template File Structure
Note: TeamSite comes with a set of standard defaults to govern the look and feel of
workflow forms.

Example:

CGI_info(

error_bgcolor => "red",

valid_bgcolor => "green",

title => "TeamSite Workflow Template",

html_body_options => "bgcolor='yellow'",

tag_table_options => "border=5 cellspacing=2 cellpadding=8",

pre_tagtable_html => "<h2>Whatever you want...</h2>",

post_tagtable_html => "...this appears after the tagtable...",

);

The TAG_info Directive

Usage:

TAG_info(list of key/value pairs);

Description:

Establishes a relationship between a list of tag names and the information the instantiator CGI
uses to collect data for them. There are two ways to build these associations:

Style 1 (simple):

tagname => "...html that collects data for tagname...";

Style 2 (highly flexible):

tagname => [html => "...html that collects data for tagname...",

is_required => "true",

valid_input => "...Perl expression...",

label => "...html label...",

error_msg => "...html error message...",

];
125

Workflow Template Files
When the instantiator CGI processes the TAG_info directive, the name attribute in the
resulting HTML code is automatically set to tagname. For example, given the following
TAG_info directive:

TAG_info(

beverage => "<input type='text' value='tea'>",

);

The internal representation of the resulting HTML code is:

"<input type='text' name='beverage' value='tea'>"

Because this is done automatically, it is impossible for the tag names to get out of sync with the
resulting HTML code. For example, if you attempted to explicitly set the name attribute to
something other than tagname:

TAG_info(

 beverage => "<input type='text' name='drink' value='tea'>",

};

then name='drink' gets removed and automatically replaced by name='beverage'.

The TAG_info directive may appear only within a <template_script> element. While
it is legal to have any number of TAG_info directives in a workflow template file, it is often
convenient to consolidate all necessary data into one TAG_info directive.

Properties that you can set for each tag in a TAG_info directive are described in the following
table:

Property Description

html Valid HTML input form field (which optionally may contain a default value).
This is required if you are using Style 2.

is_required Whether end-user input in the tag is required. Defaults to true if not set.

valid_input Rules to check input validity. Default is to check for an empty string if not set.

error_msg An HTML message returned if end-user input is invalid. Default message is
Valid input required if not set.

label The HTML label displayed beside the HTML input field for this tag. Defaults
to the value of tagname if not set.
126 Workflow Developer’s Guide

Workflow Template File Structure
Array Validators

When validating input in a valid_input expression, both $_ and @_ are set appropriately.
Therefore, when collecting information in a multi-select list, a tag’s validator can be
implemented as follows:

TAG_info(

a_tag_name => [html => "html that collects data for a_tag_name...",

valid_input => 'a_tag_validator(@_)',

]

)

Example:

The following example shows definitions for three tags (named food, beverage, and music).
Each tag can be used any number of times by the instantiator CGI to prompt for and collect
end-user input in a workflow form.

The definition for tag food specifies that the HTML element used to collect data for this CGI
variable is a text field.

The tag beverage has the following characteristics:

• It only accepts text input.

• It automatically displays a default value of Beverage: tea in its entry field.

• A value in its entry field, either end-user input or the default, is required.

• The label Enter beverage choice is displayed beside the text field that collects user
input.

• valid_input specifies that all data entered by an end user must begin with the string
Beverage:.

• error_msg specifies the error message to be displayed if end-user input does not begin
with Beverage:.
127

Workflow Template Files
The tag music displays a default value of Punk.

TAG_info(

food => "<input type='text'>",

beverage => [html => "<input type='text' value='Beverage: tea'>",

 is_required => 'true',

 label => 'Enter beverage choice',

 valid_input => '/^Beverage:/',

 error_msg => '
'.

'ERROR: input must begin with "Beverage:"'.

'',

],

music => "<input type='text' value='Punk'>",

);

The __ELEM__ Directive

Usage:

__ELEM__($tagname);

Description:

Returns the number of data elements associated with tag tagname. If tagname is undefined,
0 is returned. The __ELEM__ directive may appear inside and/or outside of a
<template_script> element. You can also embed an __ELEM__ directive within an
__INSERT__ directive. A workflow template file can contain any number of __ELEM__
directives.
128 Workflow Developer’s Guide

Workflow Template File Structure
Example:

The following TAG_info directive defines the tag reviewers to accept multiple selections.
Therefore, this one tag can have multiple values. By default, two reviewers (Bob and Jerry)
have been selected. If an end user accepts these default values, __ELEM__('reviewers');
will yield 2. If an end-user also selects Phil as a reviewer, __ELEM__('reviewers');
will yield 3.

TAG_info(

reviewers => [html => "<select multiple>" .

 " <option>Phil" .

 " <option selected>Bob" .

 " <option selected>Jerry" .

 "</select>",

label => "Pick reviewers",

],

);

The __TAG__ Directive

Usage:

__TAG__($tagname);

Description:

When the instantiator CGI creates a job specification, it uses each __TAG__ directive in the
workflow template file as an insertion point for the HTML-encoded value associated with the
form input key tagname. Thus, user input from any tag can be inserted at any point in a job
specification file in HTML-encoded form.

In addition, the __TAG__ directives can mention form input key names that are not defined
in TAG_info as long as the POST/GET data is provided for these keys programatically. The
following POST/GET keys are always passed, and are therefore always available for use in a
workflow template file or job specification file. The set of passed tags differs depending on
how the job is started as shown in the following tables.
129

Workflow Template Files
If started by Submit:

If started by New Job:

Additionally, the iw_overwrite POST/GET key makes the status of the Overwrite button
in the TeamSite GUI available to the workflow subsystem. For example, if Overwrite is selected,
an iw_overwrite value of true is passed as POST/GET data to the instantiator CGI, making it
available for use in a job specification. If Overwrite is not selected, the value of iw_overwrite
is false.

Key Name Description

iw_areaowner The owner of the workarea
iw_branch The branch’s vpath (/default/main/subranch1)
iw_home The iw-home directory
iw_role The user’s role
iw_session The session string
iw_template_file The template file’s path and name relative to

iw-home/local/config/wft

iw_template_name The template name to be displayed in TeamSite GUI
iw_use_default Use the default argument of the template (defaults to true)
iw_user The user’s name
iw_workarea The workarea’s vpath (/default/main/WORKAREA/user1)

Key Name Description

iw_home The iw-home directory
iw_role The user’s role
iw_session The session string
iw_template_file The template file’s path and name relative to

iw-home/local/config/wft

iw_template_name The template name to be displayed in TeamSite GUI
iw_use_default Use the default argument of the template (defaults to true)
iw_user The user’s name
130 Workflow Developer’s Guide

Workflow Template File Structure
Additional POST/GET keys could also be available, depending on the job’s configuration. To
display a list of all POST/GET keys available in a specific job, run show_env.cgi by naming
it in the job’s <cgitask> element. For example:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE workflow SYSTEM "iwwf.dtd">

<workflow name="minimal"

 owner="jon" creator="jon"

 description="This is a minimal example of a CGI task">

<cgitask name="cgi" start="t" owner="chris"

 description="First CGI task" immediate="t">

<areavpath v="/default/main/wfregr2/WORKAREA/chris"/>

<successors>

<successorset description="Success">

<succ v="end"/>

</successorset>

</successors>

<command v="show_env.cgi"/>

</cgitask>

<endtask name="end"/>

</workflow>

The __TAG__ directive may appear inside or outside of a <template_script> element.
You can also embed a __TAG__ directive within an __INSERT__ directive. A workflow
template file can contain any number of __TAG__ directives. To determine how many elements
a tag contains, refer to the __ELEM__ directive. See “Using Variables in Strings” on page 135 for
details about the syntax of variables used within the __TAG__ directive.
131

Workflow Template Files
Examples:

If your workflow template file contained the following text:
I wish I had a __TAG__('beverage');

and the instantiator CGI POST/GET data for tag beverage was cup of tea, the job
specification would contain:

I wish I had a cup of tea

Similarly, if beverage were an array tag (for example a multi-select or checkbox), and 2
were a valid index, the following would be a valid entry in the workflow template file:

I wish I had a __TAG__('beverage[2]');

In this case, the third element from tag beverage would be inserted by __TAG__ . The third
element is chosen because arrays start at element 0.

The __INSERT__ Directive

Usage:

__INSERT__($string);

Description:

Inserts the value of the variable (or hard coded string) $string into the workflow template file,
where $string can be any arbitrary text (typically, workflow XML). $string can optionally
include embedded tags (using the __TAG__ directive) and/or elements (using the __ELEM__
directive). Embedding tags within an __INSERT__ directive is especially useful when the
template’s output needs to be generated dynamically. See “Using Variables in Strings” on page 135
for details about the syntax of variables used within the __INSERT__ directive.
132 Workflow Developer’s Guide

Workflow Template File Structure
Example:

The following example shows the portion of a workflow template file that sequentially inserts
the values of tags a, b, and c into the job specification file.

<template_script><![CDATA[

my $i;

my @tag_array = ('a','b','c');

for ($i=0; $i<3; ++$i)

{

__INSERT__("I am __TAG__($tag_array[$i]); pleased!\n");

}

]]></template_script>

Note that an __INSERT__ directive can also process complex expressions both inside and
outside of a <template_script> element (for example, it can process quoted fragments
containing nested __TAG__(...); directives, possibly joined by ‘.’).

The __VALUE__ Directive

Usage:

__VALUE__($tagname);

__VALUE__($tagname,$encoding);

Description:

By default, returns the unescaped POST/GET data associated with tag $tagname, but unlike
__TAG__($tagname), it does not insert anything into the job specification when the
instantiator CGI processes the workflow template file. If the value of the optional parameter
$encoding is set to html, the HTML-encoded version of the data is returned instead of the
raw value.
133

Workflow Template Files
This is useful when the template’s output needs to be generated dynamically based on the POST/
GET values the instantiator CGI receives. The values returned by the variable $tagname are as
follows:

• If $tagname does not refer to a defined POST/GET key name, undef is returned.

• If $tagname is a scalar POST/GET key name, a scalar is returned.

• If $tagname is an array POST/GET key name, a list is returned.

• If $tagname is a subscripted array POST/GET key name, a scalar is returned.

The __VALUE__ directive may only appear within a <template_script> element. In a
__VALUE__($tagname); directive, if the tagname is a subscripted array, the subscript can be an
expression.

Example:

The following example uses __VALUE__ of tag x to set the upper limit of $i. This example
assumes that the form input key name x contains an integer.

<template_script><![CDATA[

for (my $i=0; $i < __VALUE__("x"); ++$i)

{

__INSERT__("very nice $i\n");

}

Advanced users: if x were an array tag (CGI form input keyname),

then it could be subscripted as follows, assuming 2 is a valid

array index (cf: __ELEM__):

#

for (my $i=0; $i < __VALUE__("x[2]"); ++$i)

#

]]></template_script>

Other Elements

A workflow template file can also contain any element that is legal in a job specification file.
These elements, described in “Workflow Template File Structure” on page 119, make up the set
of general workflow configuration instructions shown in the workflow template file box in the
diagram on page 116.
134 Workflow Developer’s Guide

Workflow Template File Structure
Using Variables in Strings

The following scenarios describe syntax rules that apply to variables in strings used by
__TAG__ and __INSERT__ directives. The scenarios start with the simplest method of
variable substitution and end with the most advanced.

Scenario 1: Basic Variable Usage

When inside a quoted string, the argument for a __TAG__ directive does not need any kind
of quoting at all.

For example, assuming you have a POST argument named color1, you can just say:

__INSERT__("shirtcolor='__TAG__(color1);' accepted!!");

Other valid usage examples are:

__INSERT__("... __TAG__('color1'); ...");

__INSERT__('... __TAG__("color1"); ...');

__INSERT__("... __TAG__(color1); ...");

__INSERT__('... __TAG__(color1); ...');

__INSERT__("... '__TAG__(color1);' ...");

__INSERT__('... "__TAG__(color1);" ...');
__TAG__("color1");

__TAG__('color1');

The following is not valid because the argument color1 is not quoted in any way, and
__TAG__ is not nested within an __INSERT__ directive:

__TAG__(color1);
135

Workflow Template Files
Scenario 2: Including Quotation Marks in Insertions

Continuing with the preceding example and adding the following information:

• you have a Perl variable named $var1 whose value is workarea

• a POST input key named workarea whose value is jon

then the following statements all insert the string jon into the job:

__INSERT__("... __TAG__($var1); ...");

__INSERT__("... __TAG__('$var1'); ...");
__TAG__($var1);

The following expression inserts the string 'jon' into the job:

__INSERT__("... '__TAG__($var1);' ...");

Therefore, to insert a tag into a job within single quotes you could say:

__INSERT__("var1='__TAG__(color1);' accepted!!");

And to insert a tag into a job within double quotes, you could say:

__INSERT__('var1="__TAG__(color1);" accepted!!');

Scenario 3: Preferred Ordering of Single and Double Quotes

If you specify either of the following:

__INSERT__('__TAG__("$var1");');

__INSERT__('__TAG__($var1);');

you will probably get an error message about not finding data for the FORM input keyname
$var1 because the outer-most quotation marks on the __INSERT__ directive are single
quotes. In Perl, single quotes are interpreted as:

“Do not interpolate anything in this string as a Perl variable.”

Hence $var1 is literally the set of characters $,v,a,r,1 (and not a variable named $var1
whose value is workarea).
136 Workflow Developer’s Guide

Workflow Template File Structure
In general you should place the double quotes outside and the single quotes inside:

__INSERT__("var1='__TAG__(color1);' accepted!!");

For example:

<template_script><![CDATA[

my $status = "not in stock.";

__INSERT__("var1='__TAG__(color1);' currently $status");

]]></template_script>

Complex Workflow Template File

The following workflow template file is more elaborate than the sample file shown in “Simple
Workflow Template File” on page 120; it shows the use of several additional file components
as explained in the preceding sections. Specifically, this file:

• Generates a form that captures the deployment date for this job.

• Ensures that the “Timed Deployment” field does not allow a user to just enter "later".

• Sets the label in the form that collects data for the deploy date to “Timed Deployment”.

• Sets the owner attribute for the XML element <workflow> to the HTML-encoded data
associated with the form input key iw_areaowner (and similar operations for the other
__TAG__ directives).

• For each file that has been selected in the TeamSite GUI, it inserts a line that reads:

 <file path='...filename...' comment='File to time deploy'/>

Note: When the job specification is generated, these lines appear between the XML tags
<files> and </files>.
137

Workflow Template Files
<?xml version="1.0" standalone="no"?>

<!DOCTYPE workflow SYSTEM "iwwf.dtd">

<template_script><![CDATA[

TAG_info(

deploy_date => [html => "<input type='text' value=''>",

 valid_input => '$_ ne "later"',

 label => "Timed Deployment",

],

);

]]></template_script>

<workflow name="TimedDeploy" owner="__TAG__('iw_areaowner');"

 creator="__TAG__('iw_areaowner');"

 description="Timed Deployment">

<usertask name="AuthorWork" owner="__TAG__('iw_areaowner');"

description="Editing files to time deploy" start="t">

 <areavpath v="__TAG__('iw_workarea');"/>

 <successors>

 <successorset description="One Minute">

 <succ v="Submit"/>

 </successorset>

 </successors>

 <files>

 <template_script><![CDATA[

for (my $i=0; $i < __ELEM__('iw_file'); ++$i)

 {

__INSERT__("<file path='__TAG__(iw_file[$i]);' comment='File to

 time deploy'/>\n");

 }

]]></template_script>

 </files>

</usertask>

<submittask name="Submit" owner="__TAG__('iw_areaowner');"

description="Staging for deployment.">

<areavpath v="__TAG__('iw_workarea');"/>

.

.

.

138 Workflow Developer’s Guide

Debugging Workflow Files
Debugging Workflow Files

Two additional POST/GET keys are available for debugging workflow template and job
specification files. Details are as follows.

iw_debug_mode

The iw_debug_mode key instructs the instantiator CGI to process input data from a
submitted form as it normally would, and then display job-specific information in a Debug
Mode page rather than instantiate the job on the server. The Debug Mode form always contains
two default sections: the Perl code (including line numbers) that generates the job specification,
and the XML job specification itself. This job specification is what would have been instantiated
on the server if debug mode had been turned off. A third section showing syntax errors appears
in the Debug Mode form if the instantiator CGI found errors in the Perl code it generated based
on form input.

iw_output_file

The iw_output_file key instructs the instantiator CGI to process input data from a
submitted form as it normally would, and then capture the output in an XML job specification
file rather than instantiate the job on the server. After it is created, you can manually instantiate
the job specification file on the server at any time via iwjobc.

Usage:

You can define the iw_debug_mode and iw_output_file key names in a TAG_info
directive (causing the keys to appear in the workflow form), or you can provide definitions
programmatically via POST/GET data.

Example:

The following example shows definitions that are set within a TAG_info directive:

TAG_info(

iw_debug_mode => "<input type='text' value='true'>",

iw_output_file => "<input type='text' value='/tmp/my_job.xml'>",

);
139

Workflow Template Files
Things to note in the preceding example:

• For either element, setting type to text, the element appears on the workflow form.
Setting type to hidden causes the element not to be displayed on the workflow form.

• You can toggle debug mode on or off by setting value to true or false.

• The file named in value must be writable by httpd.

Workflow Log File

Output from workflow runtime diagnostics is logged in:

• iw-home\local\logs\iwjoberrors.log (Windows)

• /var/adm/iwjoberrors.log (UNIX)

Sample Workflow Templates

The TeamSite installation program installs sample workflow templates for several common jobs.
Some of these templates are available by default from the TeamSite GUI, and others require that
you configure TeamSite to make them available. The following sections describe where each
template resides, the job that is configured by each template, and how to make the template
available through the TeamSite GUI.

Sample Template Locations

Sample workflow templates reside in two directories:

• iw-home/local/config/wft/default

• iw-home/local/config/wft/examples
140 Workflow Developer’s Guide

Sample Workflow Templates
Following a TeamSite installation, templates in the default directory are automatically
displayed as choices in the New Job window when a user selects File > New Job in the
TeamSite GUI.

Templates in the examples directory require that you configure the available.templates.ipl
file to make them available from the TeamSite GUI. After you make them available, they appear
together with the default templates in the New Job window. The following sections describe the
default and example templates in detail.

Default Template Descriptions

The following workflow templates are installed in iw-home/local/config/wft/default:

Template Name Description

author_assignment.wft Lets an Editor, Administrator, or Master assign a job to an
Author. The assigner selects an author and enters a task
description. The assigner also selects a branch and workarea if
the job is initiated from the To Do List view. An approval
sequence is also included for the author assignment.

author_assignment_with_
email.wft

Lets Editors, Administrators, and Masters assign a job to an
Author. The workflow notifies the Author via email.
141

Workflow Template Files
By default, these workflow templates are referenced in the available_templates.cfg
file as described in “The available_templates.cfg File” on page 102. Therefore, all are available
via the File > New Job command following a TeamSite installation.

Note: The work_order and dual_work_order templates are highly configurable. It is
recommended that you configure TeamSite as described in the following sections
before allowing end-users to run the Work Order and Dual Work Order jobs.

Configuring the Work Order Template

The Work Order template (work_order.wft) describes a job that enables an Editor,
Administrator, or Master define work assignments and approval chains for a job of any length.
The job can contain:

• Single or multiple contributors

• Single or multiple approvers

• Serial contributors and approvers

author_submit.wft Submits a data content record (DCR) to the staging area when
an Author clicks Save and Exit in TeamSite Templating Data
Content Record window. This automates the submission
process, eliminating the need for the Author to initiate the
submission manually after creating or editing a DCR.Requires
the presence of TeamSite Templating.

default_submit.wft Performs the same actions as the Submit Direct button, plus
provides support for pre-submit activities including approval,
file type recognition, and user-specific destinations.

dual_work_order.wft Configures a job that lets an Editor, Administrator, or Master
assign to another user the task of setting up the job defined by
the Work Order template. Requires additional configuration as
described in “Configuring the Dual Work Order Template” on
page 145.

work_order.wft Configures a template that lets an Editor, Administrator, or
Master define work assignments and approval chains for a job
of any length. Requires additional configuration as described in
“Configuring the Work Order Template” on page 142.

Template Name Description
142 Workflow Developer’s Guide

Sample Workflow Templates
• Concurrent contributors and approvers

• Metadata assignments

• Task attribute assignments (for example, whether files are locked or read-only)

• Recursion (jobs that run again at specified intervals of time)

• Archiving (saving the job for a specified amount of time following its completion)

After you perform the configuration tasks described in this section, the Work Order job is
ready for use by job creators. A job creator running the job can then enter data in the Work
Order template using the TeamSite GUI to control the following parameters for the current
instance of the job:

• Which users will be content contributors

• Which users will be content approvers

• Which users will receive email notification when a task is done

• Whether contributors and approvers will work serially or concurrently

• Whether files are locked

• Whether files are read-only

• Whether contributors can add metadata to a file

• How many days will elapse before the job runs again

• How long the job will be saved after it is completed

To configure the Work Order template:

1. Open the work_order.wft in a text editor.

2. Set the $number_of_contributors variable as described in the file’s comments to
specify how many times the contributor field appears in the Work Order form.

The default value is 2.

3. Set the $number_of_approvers variable as described in the file’s comments to specify
how many times the approver field appears in the Work Order form.

The default value is 2.
143

Workflow Template Files
4. Set the @possible_contributors variable as described in the file’s comments to
specify which TeamSite roles will be used as the basis for the drop-down list of possible
contributors.

The default roles are Author and Editor.

5. Set the @possible_approvers variable as described in the file’s comments to specify
which TeamSite roles will be used as the basis for the drop-down list of possible approvers.

The default role is Master.

6. Set the $skip_metadata variable as described in the file’s comments to specify whether
the Work Order form will contain a metadata field.

The default value is FALSE, which creates a metadata field in the Work Order form.

If a metadata field exists in the form, the person using the form to set up the job instance
can specify whether content contributors will be prompted to set metadata for a file.

7. Set the $skip_email variable as described in the file’s comments to specify whether the
Work Order form will contain a field for email addresses.

The default value is FALSE, which creates an email address field in the Work Order form.

If an email address field exists in the form, the person using the form to set up the job
instance can specify who receives email notification upon task assignment.

8. Set the $skip_save_job variable as described in the file’s comments to specify whether,
and for how long, the job is saved following completion.

The default value is FALSE, which creates a save job field in the Work Order form.

If a save job field exists in the form, the person using the form to set up the job instance
can specify the duration (in days) that the job is saved.

9. Set the $skip_recurring variable as described in the file’s comments to specify whether,
and how often, the job reoccurs.

The default value is FALSE, which creates a job recursion field in the Work Order form.

If a job recursion field exists in the form, the person using the form to set up the job instance
can specify how many days elapse before this job runs again.
144 Workflow Developer’s Guide

Sample Workflow Templates
10.Set the $skip_branch variable as described in the file’s comments to specify whether
the person filling in the Work Order form is prompted for branch and path information.

The default is FALSE.

11.Optionally, set default values for any of the following variables:

A line already exists for each variable’s default in work_order.wft. To set no default for
a variable, set its value to "" (an empty string). Do not comment out any of the variables.
See the comments in work_order.wft for more information.

Configuring the Dual Work Order Template

The Dual Work Order (dual_work_order.wft) template describes a job that lets an
Editor, Administrator, or Master assign to another user the task of setting up the job defined
by the Work Order template.

Variable Current Default Value

$workflow_name Ordered Change Request

$contributor_default No default

$task_desc_default Do this

$contrib_email_default No default

$contrib_perform_tasks_default serial

$metadata_default no

$contrib_lock_default yes

$approver_default No default

$approver_email_default No default

$approver_perform_tasks_default serial

$approver_lock_default no

$approver_read_only_default yes

$workarea_path_default No default

$recurring_days No default

$numrows_default 1
145

Workflow Template Files
For example, a second-level manager could use the Dual Work Order template to delegate a
job’s setup to a first-level manager. The second-level manager would fill in the initial Dual
Work Order form, stating which first-level manager should complete the job setup. When
the second-level manager starts the job, the first-level manager receives the job setup
assignment and the Dual Work Order template automatically starts the Work Order job
as an external task for the first-level manager to complete. At completion of the entire job,
the second-level manager can approve the entire job before it is submitted.

Note: The Dual Work Order job runs the Work Order job as an external task, ensure that
work_order.wft is configured as described in the previous section before running
Dual Work Order.

To configure the Dual Work Order template:

1. Open the dual_work_order.wft in a text editor.

2. Set the $areavpath variable so that it specifies a path to any workarea on the system.

This step is necessary so that the CGI task that runs as part of the Dual Work Order job
is directed to TeamSite. Therefore, you can specify any valid TeamSite workarea when setting
$areavpath.

3. Set the $number_of_contributors variable as described in the file’s comments to
specify how many times the contributor field appears in the Dual Work Order form.

The default value is 2.

4. Set the @possible_contributors variable as described in the file’s comments to
specify which TeamSite role(s) will be used as the basis for the drop-down list of possible
contributors.

The default roles are Author and Editor.

5. Optionally, set default values for any of the following variables:

Variable Current Default Value

$workflow_name Coordinated Change Request

$contributor_default No default

$task_desc_default Do this
146 Workflow Developer’s Guide

Sample Workflow Templates
A line already exists for each variable’s default in dual_work_order.wft. To set no default
for a variable, set its value to "" (an empty string). Do not comment out any of the variables.
See the comments in dual_work_order.wft for more information.

Example Template Descriptions

The templates in iw-home/local/config/wft/examples are included as reference
examples that are applicable to some installations. The functionality provided by these examples
is included in a more generalized form in the work_order.wft template. The templates in the
examples directory are provided as shorter, more modular examples of how you can develop
custom workflow templates.

To make the example files available to end-users, you must edit available_templates.cfg
as described beginning on page 102.

The following example templates reside in iw-home/local/config/wft/examples:

$contrib_email_default No default

$self_approve_default yes

$self_email_default No default

$numrows_default 1

Template Name Description

author_assignment_with_nested_
job.wft

Lets Editors, Administrators, and Masters assign
a job that contains two tasks, the second of which
does not begin until the first has been approved
by an editor.

concurrent_approval.wft Lets Editors, Administrators, and Masters assign a
task to a content contributor and specify a single
user or group as the approver.

concurrent_approval_with_email_
with_metadata.wft

Performs the same activities as Concurrent
Approval, plus allows the content contributor to
set metadata for a file, and sends email to the
approver(s).

Variable Current Default Value
147

Workflow Template Files
You should examine each .wft file for details about its construction and the features of the job
it defines. After examining each file, you can choose to use it as is, or modify it for your specific
installation using the information from “Workflow Template File Structure” on page 119.

concurrent_approval_with_
metadata.wft

Performs the same activities as Concurrent
Approval, plus allows the content contributor
to set metadata for a file.

serial_approval.wft Lets Editors, Administrators, and Masters assign
a task to a content contributor and specify one
or more users as the approvers.

serial_approval_with_email_
with_metadata.wft

Performs the same activities as Serial Approval,
plus allows the content contributor to set metadata
for a file, and sends email to the approvers.

serial_approval_with_
metadata.wft

Performs the same activities as Serial Approval,
plus allows the content contributor to set metadata
for a file.

Template Name Description
148 Workflow Developer’s Guide

Regular Expression Support
Regular Expression Support

You can use regular expressions within workflow templates to search for a specified pattern and
specify what to do when matching patterns are found. For example, you can perform regular
expression searches for constraints on workflow templates. Consider the following TeamSite
structure:

If you want only the users in the three administration_1 branches (a1, a2, and a3) to
access a workflow template, you can set the following constraint:

<branch_list>

<branch value="/default/main/administrator_1/a1" include="yes" />

<branch value="/default/main/administrator_1/a2" include="yes" />

<branch value="/default/main/administrator_1/a3" include="yes" />

<branch value="all" include="no" />

</branch_list>

If a new branch called a4 is added to /default/main/adminstrator_1 you could manually
update the available templates.cfg file to allow access for users in the new branch by
adding the following line:

<branch value="/default/main/adminstrator_1/a4" include="yes" />

Or you could modify the available templates.cfg file to use the following regular
expression and automate the constraints placed on the a4 branch:

<branch_list>

<branch value="/deault/main/adminstrator_1/.*" include="yes" />

<branch value="all" include="no" />

</branch_list>

This regular expression allows users from any branch under /deault/main/adminstrator_1
to have access to the template.

/default/main

— sales

— marketing

— administrator

-m1
-m2
-m3

-a1
-a2
-a3

-s1
-s2
-s3
149

Workflow Template Files
150 Workflow Developer’s Guide

Chapter 8

Job Specification Files
In addition to creating Job files in WorkflowBuilder (as described in Chapter 4, “Using
WorkflowBuilder”), you can create a job by directly editing an XML job specification file.
This job specification file must:

• Reside in the TeamSite home directory

• Be structured as described in “Job Specification File Structure” on page 153

• Use elements as described in “Element Definitions” on page 153

See “Sample Job Specification File” on page 173 for an example of this type of file.
See http://www.xml.com/axml/testaxml.htm for a detailed XML specification.

Running Manually Created Jobs

After creating a job specification file to define a workflow model, run the job by completing
the following procedure:

1. Change to the directory that corresponds with your platform:

• cd iw-home/bin (UNIX)

• cd C:\Program Files\Interwoven\TeamSite\bin (Windows NT and 2000)

2. Execute iwjobc from the command-line to create an instance of the job on your TeamSite
server.

3. Execute the iwinvokejob utility.
151

Job Specification Files
Note: While a job specification file can only define a single workflow model, it is possible
to instantiate multiple, identical, concurrent jobs by instantiating and executing the
same job specification file more than once using iwjobc and iwinvokejob.
Upon invocation, the job runs until one of its end tasks is activated. Once a job ends,
its instance is removed, and you must re-instantiate it to run it again.

Other command-line utilities enable you to destroy jobs, view the state of any object in the
workflow system, add files to a particular task within the job, and otherwise interact with
running jobs. See TeamSite Command-Line Tools for details about the following workflow utilities:

While the workflow subsystem can be configured to create and save a job specification file for
any job, the normal scenario is for the job to be instantiated without the job specification being
saved in a file. Saving the job specification in a file is a step that is usually taken only when you
need to view the file for debugging.

iwaddtaskfile iwcallback iwgetwfobj

iwinvokejob iwjobc iwqueryjobs

iwquerytasks iwretrywfop iwrmjob

iwrmtaskfile iwtaketask iwtaskselect

iwundochoice
152 Workflow Developer’s Guide

Job Specification File Structure
Job Specification File Structure

A job specification file describes a single job. It is structured as a hierarchy of sections, each
containing an element definition that enables you to control a job parameter. An initial
<workflow> section defines the overall characteristics of the job. It is followed by one or
more task sections describing specific tasks that occur as part of the job.

The following list shows all of the possible elements that can define sections in a job specification
file. Indentation shows nesting levels:

workflow

usertask

updatetask

submittask

externaltask

endtask

grouptask

cgitask

dummytask

locktask

All of these elements, their attributes, and their subelements are described in the following
section. See “Sample Job Specification File” on page 173 for examples of files that use these
elements.

Element Definitions

The following DTD excerpts describe the syntax for each job specification file element.
These elements are also valid in a workflow template file.

Note: Subelements within an element must be ordered as shown in the DTD. See
iw-home/local/config/wft/iwwf.dtd for the complete workflow DTD.
153

Job Specification Files
<workflow> Element

A <workflow> element defines a job’s name and owner.

<!ELEMENT workflow (description?, variables?,

(usertask|submittask|updatetask|externaltask|cgitask|endtask|grouptask|

dummytask|locktask)+)>

<!ATTLIST workflow name ID #REQUIRED

owner CDATA #REQUIRED

creator CDATA #REQUIRED

description CDATA #IMPLIED>

Attributes:

name Name of the job. Job names are not unique identifiers.
However, each job that is instantiated is identified by a
unique ID number.

owner The owner responsible for the job (defined in workflow
template file rules).

creator The user who started the job via the TeamSite GUI’s
workflow form.

description A description of what the job does. Can be specified as
both an attribute and a subelement of <workflow>.

Subelements:

<description>

A description of what the job does. Can be specified as both an attribute and a subelement of
<workflow>. Syntax is as follows:

<!ELEMENT description (#PCDATA)>
154 Workflow Developer’s Guide

Job Specification File Structure
<variables>

Workflow variables are key-value pairs that can be stored in and retrieved from job instances.
They are used to allow separate CGI tasks and external tasks to communicate with each other
during job execution. Workflow variables are manipulated using the iwjobvariable CLT or
by specifying them at job creation time. Syntax is as follows:

<!ELEMENT variables (variable+)>

<!ELEMENT variable EMPTY>

<!ATTLIST variable key NMTOKEN #REQUIRED

value CDATA #REQUIRED>

Parameters Common to All Tasks

The following parameters apply to all task elements (<usertask>, <updatetask>,
<submittask>, <externaltask>, <grouptask>, and <cgitask>). In this section, the
term task represents any of these elements. For information about parameters that apply only
to a specific task element, see that element’s section later in this chapter.

<!ELEMENT task (description?, areavpath, successors, timeout?,

files?, activation?, inactivate?, resets?,

eastartop*, eafinishop*, variables?)>

<!ATTLIST task owner CDATA #REQUIRED

 name ID #REQUIRED

 start (t|f) "f"

 description CDATA #IMPLIED

 lock (t|f) "f"

 readonly (t|f) "f">

Attributes:
owner The owner of the task.

name The name of the task. A task is uniquely identified within
its job by its name.

start Specifies whether the task should be active upon its
containing job’s invocation. The default is f.

description A description of what the task does. Can be specified as an
attribute as well as a subelement of task.
155

Job Specification Files
lock When the lock attribute is set to t the task will acquire
TeamSite locks on all the files it contains when it becomes
active. If the task cannot acquire locks for one or more of
the files it contains it will release any locks it has already
acquired and try again every five minutes until it successfully
acquires all locks. When a locking task tries to acquire a lock
for a file it checks first to see if that file is locked by some
other task in its own job. If it is, the locking task “steals” the
lock from the other task. This behavior can result in submit
time conflicts. In general it is best to ensure that no task will
try to acquire locks that could already be owned by another
active task.

readonly Marking a task read only disallows users from adding,
removing, or modifying files. Note readonly is used only
by <usertask> and <grouptask>.

Subelements:

<areavpath>

The <areavpath> subelement specifies the TeamSite area associated with this task. Syntax is
as follows:

<!ELEMENT areavpath EMPTY>

<!ATTLIST areavpath v CDATA #REQUIRED>

<timeout>

A timeout is an optional time limit for the completion of a task. When time runs out the task
is inactivated and the <succ> elements are signalled to become active. The time value for
<timeout> is specified as the v attribute in two possible forms: +HHHHMM, which is the
number of hours and minutes after the task becomes activated that the timeout should occur,
or MMDDYYYYHHMM, which is the month, day, year, hour, and minute at which the timeout
should occur. When using +HHHHMM, you must use all six digits, including leading zeros if
necessary. Syntax is as follows:

<!ELEMENT timeout (succ)+>

<!ATTLIST timeout v CDATA #REQUIRED>

<!ELEMENT succ EMPTY>

<!ATTLIST succ v IDREF #REQUIRED>
156 Workflow Developer’s Guide

Job Specification File Structure
<files>

These are the files that the actions of a task affect. The files can be specified at configuration
time (but only on <start> tasks) or dynamically (but only on active tasks). It is expected
that the user interface will allow users to modify and/or add to the comment field. Syntax is
as follows:

<!ELEMENT files (file+)>

<!ELEMENT file EMPTY>

<!ATTLIST file path CDATA #REQUIRED

 comment CDATA #REQUIRED>

<activation>

The <activation> element specifies the conditions under which a task will become active.
The body of the <activation> element specifies a logical expression. When a finishing task
signals a successor task, the successor task notes that the finishing task has signaled and then
evaluates the logical expression to determine if it should become active. Syntax is as follows:

<!ELEMENT activation (and|or|not|pred)>

<!ELEMENT and (and|or|not|pred)*>

<!ELEMENT or (and|or|not|pred)*>

<!ELEMENT not (and|or|not|pred)>

<!ELEMENT pred EMPTY>

<!ATTLIST pred v IDREF #REQUIRED>

For example, given tasks A, B, C that can signal task D, the <activation> element for D
looks like this:

<activation>

<and>

<pred v="A"/>

<or>

<pred v="B"/>

<pred v="C"/>

</or>

</and>

</activation>

This means (in more conventional notation): A & (B | C). When A, B or C signals D, D notes
the fact that it has been signaled, and evaluates A & (B | C) where the values of A, B and C are
157

Job Specification Files
whether they have signalled D. In this example, D becomes active if and only if A has signalled
and B or C have signalled.

<inactivate>

A task becomes inactive at the time it signals its successors. However it is often necessary to
inactivate tasks other than those which have signalled a task when that task becomes active. For
example, suppose a user completes a task and routes it simultaneously to five user for review.
If one of those reviewers rejects the work, the task should be inactivated and removed from the
lists of the other four reviewers. Syntax is as follows:

<!ELEMENT inactivate (pred+)>

For example, given tasks A and B that can signal it, task C has the following <activation>
and <inactivate> sections:

<activation>

<or>

<pred v="A"/>

<pred v="B"/>

</or>

</activation>

<inactivate>

<pred v="A"/>

<pred v="B"/>
</inactivate>

When C becomes active, by being signalled by either A or B, it inactivates both A and B.
Specification of the <inactivate> element is optional. If the <inactivate> element is
unspecified it is the same as specifying an <inactivate> element containing all possible
predecessor tasks.
158 Workflow Developer’s Guide

Job Specification File Structure
<resets>

A task can be configured to reset the activation state of an arbitrary set of other tasks when it
becomes active. Resetting the activation state of a task simply means that such tasks are set
to a state of no tasks having activated them. This capability is useful in certain parallel task
configurations. Syntax is as follows:

<!ELEMENT resets (reset+)>

<!ELEMENT reset EMPTY>

<!ATTLIST reset v IDREF #REQUIRED>

<eastartop>, <eafinishop>

Both when a task becomes active (<eastartop>) and when a task becomes inactive
(<eafinishop>), TeamSite extended attributes can be set, modified, or deleted on the files
contained by the task. Syntax is as follows:

<!ELEMENT eastartop EMPTY>

<!ATTLIST eastartop op (set|append|delete) #REQUIRED

 name CDATA #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT eafinishop EMPTY>

<!ATTLIST eafinishop op (set|append|delete) #REQUIRED

 name CDATA #REQUIRED

 value CDATA #REQUIRED>

If the op attribute of the <eaXXXop> element is set, the extended attribute with key name
will be set to value. If op is append, value will be appended. If op is delete, the extended
attribute with key name will be deleted.

The value attribute of the <eaXXXop> element can contain the following macros of the form
%name; that will be expanded before being set as an extended attribute:

Macro Name Description

%workflow; Name of the job

%workflowid; ID of the job

%task; Name of the task

%taskid; ID of the task

%taskowner; Owner of the task
159

Job Specification Files
<usertask> Element

A <usertask> element defines user tasks that appear on a user’s task list.

<!ELEMENT usertask (description?, areavpath, successors, timeout?,

files?, activation?, inactivate?, resets?,

eastartop*, eafinishop*, variables?)>

<!ATTLIST usertask owner CDATA #REQUIRED

name ID #REQUIRED

start (t|f) "f"

description CDATA #IMPLIED

lock (t|f) "f"

readonly (t|f) "f">

Attributes:
There are no attributes unique to user tasks. See “Parameters Common to All Tasks” on page 155
for descriptions of the attributes shown in the preceding DTD excerpt.

Subelements:
See “Parameters Common to All Tasks” on page 155 for descriptions of the subelements from
the preceding DTD excerpt that are common to other tasks. Usage of the <successors>
subelement is as follows:

%time; The current wall clock time

%area; VPATH of the task's area

%path; Path of the file from area root

%fullpath; Full path of the file from server root

%taskcomment; Task-specific comment added to the extended attribute

%filecomment; File-specific comment added to the extended attribute

Macro Name Description
160 Workflow Developer’s Guide

Job Specification File Structure
<successors>

The <successors> subelement specifies the possible alternative sets of successor tasks to signal
when the user task is finished. The GUI presents the user with a set of options for finishing a task.
The text of the description of the task is used to label the alternatives for the user (for example,
“Mark Done”, “Reject”, “Approve” and so on).

<!ELEMENT successors (successorset+)>

<!ELEMENT successorset (description?, succ+)>

<!ATTLIST successorset description CDATA #IMPLIED>

<!ELEMENT succ EMPTY>

<!ATTLIST succ v IDREF #REQUIRED>

<grouptask> Element

A <grouptask> element is similar to a user task in that it appears on a user’s task list. A group
task, however, belongs to an arbitrary group of users and therefore shows up in the task list of
every user who belongs to that arbitrary group. A group task becomes identical in behavior to
a user task when one user from the group takes ownership of the task via the GUI or the CLT
iwtaketask.

<!ELEMENT grouptask (description?, areavpath, successors, sharedby,

timeout?, files?, activation?, inactivate?,

resets?, eastartop*, eafinishop*, variables?)>

<!ATTLIST grouptask name ID #REQUIRED

 start (t|f) "f"

 description CDATA #IMPLIED

 lock (t|f) "f"

 readonly (t|f) "f">

Attributes:
There are no attributes unique to group tasks. See “Parameters Common to All Tasks” earlier
in this chapter for descriptions of the attributes shown in the preceding DTD excerpt.

Subelements:
See “<usertask> Element” on page 160 for a description of the <successors> subelement.
See “Parameters Common to All Tasks” on page 155 for descriptions of the other subelements
from the preceding DTD excerpt that are common to other tasks. Subelements that are unique
to group tasks are as follows:
161

Job Specification Files
<sharedby> Element

The <sharedby> element specifies the arbitrary set of users who share this group task. The
element allows an arbitrary combination of individual TeamSite users and OS groups to be
shared owners of the group task. Syntax is as follows:

<!ELEMENT sharedby (user|group)*>

<!ELEMENT user EMPTY>

<!ATTLIST user v CDATA #REQUIRED>

<!ELEMENT group EMPTY>

<!ATTLIST group v CDATA #REQUIRED>

<externaltask> Element

An external task runs external programs when it becomes active.

<!ELEMENT externaltask (description?, areavpath, successors,

command, timeout?, files?, activation?,

inactivate?, resets?, eastartop*,

eafinishop*, variables?)>

<!ATTLIST externaltask owner CDATA #REQUIRED

 name ID #REQUIRED

 start (t|f) "f"

 description CDATA #IMPLIED

 lock (t|f) "f"

 readonly (t|f) "f">

Attributes:
There are no attributes unique to external tasks.

See “Parameters Common to All Tasks” on page 155 for descriptions of the attributes shown
in the preceding DTD excerpt.

Subelements:
See “<usertask> Element” on page 160 for a description of the <successors> subelement.
See “Parameters Common to All Tasks” on page 155 for descriptions of the other subelements
from the preceding DTD excerpt that are common to other tasks. Subelements that are unique
to external tasks are as follows:
162 Workflow Developer’s Guide

Job Specification File Structure
<command>

The <command> element specifies the full path of the program to be run on activation followed
by any initial arguments. When the program is run by the workflow system, the following
arguments are passed as separate arguments: the containing job’s ID (in decimal), the ID of
the task, and each file from the task's file list. On Solaris the program will be run as the owner
of the task. On Windows NT it runs as the SYSTEM user.

Syntax for use of the <command> subelement is as follows:

<!ELEMENT command EMPTY>

<!ATTLIST command v CDATA #REQUIRED>

When an external program finishes it must run the iwcallback program, passing the job and
task IDs and a return code as arguments, to tell the server that it is finished. The server does
not wait for an external task to finish. The server uses the return code passed to iwcallback
to choose the set of successors to signal. If the return code is out of the range 0..n-1 (where n
is the number of <successorset> elements), the last successor set is used.

<cgitask> Element

A CGI task behaves much like an external task. The only difference is that a CGI task does not
run its <command> element (it relies on the user interface for that). A CGI task expects to have
iwcallback called to notify it of program completion.

<!ELEMENT cgitask (description?, areavpath, successors, command,

 timeout?, files?, activation?, inactivate?,

 resets?, eastartop*, eafinishop*, variables?)>

<!ATTLIST cgitask owner CDATA #REQUIRED

 name ID #REQUIRED

 start (t|f) "f"

 description CDATA #IMPLIED

 lock (t|f) "f"

 immediate (t|f) "f"

 readonly (t|f) "f">

Attributes:
There are no attributes unique to CGI tasks.
163

Job Specification Files
See “Parameters Common to All Tasks” on page 155 for descriptions of the attributes shown in
the preceding DTD excerpt.

Subelements:
There are no subelements unique to CGI tasks.

See “<usertask> Element” on page 160 for a description of the <successors> subelement.
See “Parameters Common to All Tasks” on page 155 for descriptions of the other subelements
from the preceding DTD excerpt.

<submittask> Element

A submit task performs a submit operation on its contained files.

<!ELEMENT submittask (description?, areavpath, successorset,

 timeout?, files?, activation?, inactivate?,

 resets?, eastartop*, eafinishop*,

 variables?)>

<!ATTLIST submittask owner CDATA #REQUIRED

 name ID #REQUIRED

 start (t|f) "f"

 skipconflicts (t|f) "f"

 skiplocked (t|f) "f"

 override (t|f) "f"

 description CDATA #IMPLIED

 lock (t|f) "f">

If the submit task succeeds, the successor tasks specified in the <successorset> element
are signaled. If the submit task fails, the submit task goes into a special state that the user
interface can detect. When the user interface has resolved any conflicts it retries the operation
so that the job can continue. For the purposes of workflow, a submit task is considered successful
even if some of its contained files were not submitted because of being up to date with the
staging area.

Attributes:
See “Parameters Common to All Tasks” on page 155 for descriptions of the attributes shown in
the preceding DTD excerpt that are common to other tasks. Attributes that are unique to submit
tasks are as follows:
164 Workflow Developer’s Guide

Job Specification File Structure
skipconflicts Does not submit conflicting files.

skiplocked Does not submit locked files.

override Overwrites the staging area version of conflicting files.

Subelements:
There are no subelements unique to submit tasks.

See “<usertask> Element” on page 160 for a description of the <successorset> subelement.
See “Parameters Common to All Tasks” on page 155 for descriptions of the other subelements
from the preceding DTD excerpt.

<updatetask> Element

An update task does the equivalent of Get Latest (if the source is the staging area) or Copy To
(if the source is another workarea or edition) on its contained files.

<!ELEMENT updatetask (description?, areavpath, successorset,

 srcareavpath, timeout?, files?, activation?,

 inactivate?, resets?, eastartop*,

 eafinishop*, variables?)>

<!ATTLIST updatetask owner CDATA #REQUIRED

 name ID #REQUIRED

 start (t|f) "f"

 delete (t|f) "t"

 overwritemod (t|f) "f"

 description CDATA #IMPLIED

 lock (t|f) "f">

If the update task fails because of conflicts, it goes into a state like that of a failed submit task.
The user interface is responsible for resolving conflicts and retrying the update task.

Attributes:
See “Parameters Common to All Tasks” on page 155 for descriptions of the attributes shown in
the preceding DTD excerpt that are common to other tasks. Attributes that are unique to update
tasks are as follows:

delete Propagates deleted files to the destination area.

overwritemod Overwrites conflicting versions of files in the
destination area.
165

Job Specification Files
Subelements:
See “<usertask> Element” on page 160 for a description of the <successorset> subelement.
See “Parameters Common to All Tasks” on page 155 for descriptions of the other subelements
from the preceding DTD excerpt that are common to other tasks.

Subelements that are unique to update tasks are as follows:

<srcareavpath>

The area from which files are copied.

<endtask> Element

An end task is a marker for the end of a job. When an end task becomes active, its associated
job is terminated and all locks held in the job are released.

<!ELEMENT endtask (activation?, eastartop*, eafinishop*)>

<!ATTLIST endtask name ID #REQUIRED

 description CDATA #IMPLIED>

Attributes:
There are no attributes unique to end tasks.

See “Parameters Common to All Tasks” on page 155 for descriptions of the attributes from
the preceding DTD excerpt.

Subelements:
There are no subelements unique to end tasks.

See “Parameters Common to All Tasks” on page 155 for descriptions of the subelements from
the preceding DTD excerpt.
166 Workflow Developer’s Guide

Job Specification File Structure
<dummytask> Element

A <dummytask> element is a task that waits for its mandatory timeout to expire. If “+000000”
is specified as a timeout value, <dummytask> becomes a spacer task. Dummy tasks let a
workflow designer create a time interval unrelated to any actual job activity. A dummy task
does not have an owner or areavpath.

<!ELEMENT dummytask (description?, timeout, files?, activation?,

 inactivate?, resets?, eastartop*,

 eafinishop*, variables?)>

<!ATTLIST dummytask name ID #REQUIRED

 start (t|f) "f"

 description CDATA #IMPLIED>

Attributes:
There are no attributes unique to dummy tasks.

See “Parameters Common to All Tasks” on page 155 for descriptions of the attributes from the
preceding DTD excerpt.

Subelements:
There are no subelements unique to dummy tasks.

See “Parameters Common to All Tasks” on page 155 for descriptions of the subelements from the
preceding DTD excerpt.
167

Job Specification Files
<locktask> Element

A <locktask> element is a task that attempts to acquire locks on the files it owns. If it succeeds,
it transitions to the successors specified in its success element. If it fails, it transitions to the
successors specified in its failure element. This provides users with a way of backing out of a
job or choosing an alternate path in a job that cannot acquire its locks.

<!ELEMENT locktask (description?, areavpath, success, failure,

files?, activation?, inactivate?, resets?,

eastartop*, eafinishop*, variables?)>

<!ATTLIST locktask owner CDATA #REQUIRED

name ID #REQUIRED

start (t|f) "f"

description CDATA #IMPLIED>

<!-- Locking is implied -->

<!ELEMENT success (succ+)>

<!ELEMENT failure (succ+)>

Attributes:
There are no attributes unique to lock tasks.

See “Parameters Common to All Tasks” on page 155 for descriptions of the attributes from the
preceding DTD excerpt.

Subelements:
See “Parameters Common to All Tasks” on page 155 for descriptions of the subelements from
the preceding DTD excerpt that are common other tasks.

Subelements that are unique to lock tasks are as follows:

<success>

Names the successor tasks that become active when the lock task succeeds.

<failure>

Names the successor tasks that become active when the lock task fails.
168 Workflow Developer’s Guide

Perl Modules
Perl Modules

These Perl modules are provided as reference for workflow template developers. Refer to the
Perl modules for the latest documentation, or see iw-home/iw-perl/bin/perldoc module.

TeamSite::WFsystem

Synopsis

Utilities for accessing the TeamSite workflow engine. This provides access to functions for
querying the entire workflow system.

use TeamSite::WFsystem;

$system = new TeamSite::WFsystem();

Functions

new() Creates a new WFsystem object. This only
works on the local TeamSite server.

GetWorkflows() Returns an array of WFworkflow objects
corresponding to all jobs in the system.

GetActiveWorkflows() Returns an array of WFworkflow objects
corresponding to all active jobs in the system.

GetTasks() Returns an array of WFworkflow objects
corresponding to all tasks in the system.

GetActiveTasks() Returns an array of WFtask objects corresponding to
all active tasks in the system.

CreateWorkflow($spec) , CreateWorkflow($spec,$tmpfile)

Creates a workflow instance from $spec (a
workflow specification in the form of a string).
Returns a TeamSite::WFworkflow. If the
$tmpfile arg is set, tmpfile is used instead
of stdin. Using this option in the context of
HTTP may result in timing security issues.

Refresh() Call after changes have been made.
169

Job Specification Files
Examples

$system = new TeamSite::WFsystem();

$wfs = $system->GetWorkflows();

$wfs = $system->GetActiveWorkflows();

$wfs is a reference to an array containing references to TeamSite::WFworkflow objects.

$tasks = $system->GetTasks();

$tasks = $system->GetActiveTasks();

$tasks is a reference to an array containing TeamSite::WFtask references.

my $wf_system = TeamSite::WFsystem->new();

my $wf = $wf_system->CreateWorkflow($spec);

if ((!defined $wf) || !$wf->IsValid() || $wf->GetError())

{

 ... handle error...

}

TeamSite::WFworkflow

Synopsis

Utilities for using the TeamSite workflow engine. This supplies functions for manipulating and
querying workflows.
$workflow = new TeamSite::WFworkflow($id)

Functions

new($id) Creates a new WFworkflow object.

GetId() Fetches the workflow ID.

GetError() Fetches the last error message (if any).

SetError($error_string) Sets the error message to $error_string and
returns the previous error message (if any).

IsValid() Determines whether this a valid workflow object.

GetTasks() Gets the tasks owned by this workflow.

GetOwner() Returns owner of workflow.
170 Workflow Developer’s Guide

Perl Modules
GetCreator() Returns the creator of this workflow.

GetName() Returns the name of the workflow.

GetDescription() Returns the description for this workflow.

Invoke() Starts this workflow running. Returns a
TeamSite::WFtask object. If the returned
object is valid, then a CGI task that wishes to
be run.

GetVariable($name) Gets the value of a workflow variable.

SetVariable($name, $value) Sets the value for a workflow variable. Returns
exit status of underlying CLT (non-zero indicates
an error occurred).

CreateVariable($name, $value) Creates a workflow variable. If the variable already
exists, this fails.

DeleteVariable($name) Deletes a workflow variable.

Refresh() Call when workflow object has been modified.

Examples

 $workflow = new TeamSite::WFworkflow($id);

 $tasks = $workflow->GetTasks();

$tasks is a reference to a list containing TeamSite::WFtask objects.
171

Job Specification Files
TeamSite::WFtask

Synopsis

Utilities for using the TeamSite workflow engine. This supplies functions for manipulating and
querying tasks.
$task = new TeamSite::WFtask($id);

Functions

new($id) Creates a new WFtask object.

GetId() Returns the task ID.

GetType() Returns the task type.

GetOwner() Gets the owner of this task.

GetDescription() Returns the description for this task.

GetWorkflowId() Returns the ID of the job that owns this task.

AddFile($path, $comment) Adds a file with comment to a task.

SetComment($comment) Sets comment on task.

($success, $immediatetask) SelectTransition($which, $comment)

Selects a transition for this task. $success is a
boolean and $immediatetask is a possibly
invalid TeamSite::WFtask to run.

($success, $immediatetask) = CallBack($retcode, $comment)

Callback from a CGI task or external task.
$immediatetask is a possibly invalid
TeamSite::WFtask to run.

GetCommand() Gets the command string for an external task.

Refresh() Call when the server side object has been changed.

IsValid() Returns true if this is a valid task.

GetSubmitEvents() Returns a (possibly empty) array of SubmitEvent
objids (as strings). It returns an array because there
may have been conflicts or other problems which
could produce multiple events.
172 Workflow Developer’s Guide

Sample Job Specification File
GetUpdateEvents() Returns a (possibly empty) array of UpdateEvent
objids (as strings). It returns an array because
there may have been conflicts or other problems
that could produce multiple events.

GetFiles() Returns a (possibly empty) array of file names.

GetArea() Gets the area for the task, such as /default/main/
dev/WORKAREA/andre

GetError() Retrieves the last error message (if any).

SetError($error_string) Sets the error message to $error_string and
returns the previous error message (if any).

Example

$task = new TeamSite::WFtask($id);

Sample Job Specification File

The following job specification file could be created by direct editing (see page 151) or by
configuring a workflow template file to generate it based on data provided by an end-user. This
file defines a workflow for this sequence of events:

1. A worker named Mark generates a set of documentation about a new product called B4000.

2. A worker named Bill then receives this documentation and prepares it for the web.

3. Bill’s manager and the legal department review Bill’s and Mark’s efforts.

4. Material is submitted and deployed on the live web server.
173

Job Specification Files
<?xml version="1.0" standalone="no"?>

<!DOCTYPE workflow SYSTEM "iwwf.dtd">

<!-- Sample workflow for B4000. -->

<workflow name="B4000" owner="BillsManager"

description="Standard workflow for new product information.">

<usertask name="MarkWork" owner="Mark"

description="Write copy for B4000" start="t">

<areavpath v="/default/main/WORKAREA/Mark"/>

<successors>

<successorset description="Done">

<succ v="MarkToBill"/>

</successorset>

</successors>

<activation>

<or>

<pred v="BillToMark"/>

<pred v="ReviewToMark"/>

</or>

</activation>

</usertask>

<updatetask name="MarkToBill" owner="Bill"

description="Update Bill's Workarea">

<areavpath v="/default/main/WORKAREA/Bill"/>

<successorset>

<succ v="BillWork"/>

</successorset>

<srcareavpath v="/default/main/WORKAREA/Mark"/>

<activation>

<pred v="MarkWork"/>

</activation>

</updatetask>
174 Workflow Developer’s Guide

Sample Job Specification File
<usertask name="BillWork" owner="Bill"

description="Webify this doc.">

<areavpath v="/default/main/WORKAREA/Bill"/>

<successors>

<successorset description="Done">

<succ v="BillToReview"/>

</successorset>

<successorset description="Send back to Mark">

<succ v="BillToMark"/>

</successorset>

</successors>

<activation>

<or>

<pred v="MarkToBill"/>

<pred v="ReviewToBill"/>

</or>

</activation>

</usertask>

<updatetask name="BillToReview" owner="Manager"

description="Update the Review area from Bill's

Workarea.">

<areavpath v="/default/main/WORKAREA/Review"/>

<successorset>

<succ v="LegalReview"/>

<succ v="ManagerReview"/>

</successorset>

<srcareavpath v="/default/main/WORKAREA/Bill"/>

<activation>

<pred v="BillWork"/>

</activation>

</updatetask>
175

Job Specification Files
<usertask name="LegalReview" owner="Legal"

description="Limit exposure." readonly="t">

<areavpath v="/default/main/WORKAREA/Review"/>

<successors>

<successorset description="Okay">

<succ v="Submit"/>

</successorset>

<successorset description="Legal problem">

<succ v="ReviewToMark"/>

</successorset>

</successors>

<activation>

<pred v="BillToReview"/>

</activation>

</usertask>

<usertask name="ManagerReview" owner="Manager"

description="Final Approval" readonly="t">

<areavpath v="/default/main/WORKAREA/Review"/>

<successors>

<successorset description="Okay">

<succ v="Submit"/>

</successorset>

<successorset description="Send back to Mark">

<succ v="ReviewToMark"/>

</successorset>

<successorset description="Send back to Bill">

<succ v="ReviewToMark"/>

</successorset>

</successors>

<activation>

<pred v="BillToReview"/>

</activation>

</usertask>
176 Workflow Developer’s Guide

Sample Job Specification File
<submittask name="Submit" owner="Manager"

description="Final submission.">

<areavpath v="/default/main/WORKAREA/Review"/>

<successorset>

<succ v="Deploy"/>

</successorset>

<activation>

<and>

<pred v="LegalReview"/>

<pred v="ManagerReview"/>

</and>

</activation>

</submittask>

<externaltask name="Deploy" owner="Manager"

description="Deploy to live server.">

<areavpath v="/default/main/STAGING"/>

<successors>

<successorset description="Successful Deployment">

<succ v="End"/>

</successorset>

<successorset description="Deployment failed">

<succ v="End"/>

</successorset>

</successors>

<command v="/scriptorium/do_deploy.pl"/>

<activation>

<pred v="Submit"/>

</activation>

</externaltask>

<endtask name="End">

<activation>

<pred v="Deploy"/>

</activation>

</endtask>

<!-- Various send back updates -->
177

Job Specification Files
<updatetask name="ReviewToBill" owner="Bill"

description="Update Bill's workarea form the Review

workarea.">

<areavpath v="/default/main/WORKAREA/Bill"/>

<successorset>

<succ v="BillWork"/>

</successorset>

<srcareavpath v="/default/main/WORKAREA/Review"/>

<activation>

<pred v="ManagerReview"/>

</activation>

</updatetask>

<updatetask name="BillToMark" owner="Mark"

description="Update Mark's workarea from Bill's">

<areavpath v="/default/main/WORKAREA/Mark"/>

<successorset>

<succ v="MarkWork"/>

</successorset>

<srcareavpath v="/default/main/WORKAREA/Bill"/>

<activation>

<pred v="BillWork"/>

</activation>

</updatetask>

<updatetask name="ReviewToMark" owner="Mark"

description="Update Mark's workarea from Review">

<areavpath v="/default/main/WORKAREA/Mark"/>

<successorset>

<succ v="MarkWork"/>

</successorset>

<srcareavpath v="/default/main/WORKAREA/Review"/>

<activation>

<or>

<pred v="ManagerReview"/>

<pred v="LegalReview"/>

</or>

</activation>

</updatetask>

</workflow>
178 Workflow Developer’s Guide

Appendix A

The iwsend_mail.ipl Script
The Perl script iwsend_mail.ipl was specifically designed for use within TeamSite
workflows to simplify the creation of external task scripts for email notification. The script
is installed by default in the /iw-home/bin directory.

What’s New In iwsend_mail.ipl?

The following features were added to the version of this script that shipped with earlier
versions of TeamSite:

• Mapping of TeamSite user names to their corresponding email addresses

• Incorporation of all workflow comments and transition comments into the email

• Enabling URL references to be used on the file list included in the email

• Command line arguments to specify multiple To and Cc recipients, the From field, the
subject line, and main body of the message

• Functional API call TeamSite::WFtask::GetComments() replaces the
get_transition_comments subroutine

The sections that follow describe these features in a detail (refer to the OpenAPI
documentation for information on the TeamSite::WFtask::GetComments() call).
179

The iwsend_mail.ipl Script
Configuring iw.cfg with Site-specific Information

Complete the following procedure to modify your iw.cfg file to include certain required
and optional parameters for the iwsend_mail.ipl script to work.

1. Open the iw.cfg file.

By default, it is located in either:

• /etc (Solaris servers)

• c:\Program Files\Interwoven\TeamSite\etc (Windows servers)

2. Modify the [iwsend_mail] section to include the following lines:

[iwsend_mail]

maildomain=interwoven.com

mailserver=mail1.interwoven.com

use_mapping_file=true

email_mapping_file=c:/iw-home/local/config/wft/email_map.cfg

debug_output=c:/tmp/iwsend_mail.log

Notes:

• maildomain: Required entry that must be set to the email domain used for email
addresses that are not otherwise qualified with a domain address.

• mailserver: Required entry that specifies the mail server used for SMTP.

• use_mapping_file: Optional entry (default=false). If this is set to true, all email
addresses are matched against a specified mapping file to see if they need to be altered
from their present settings.

• email_mapping_file: Required entry if use_mapping_file=true. This specifies
the full path to the email mapping file (more details below).

• debug_output: Optional entry. If this option is set, debugging information is sent to
the file specified.

3. Save and close the file.
180 Workflow Developer’s Guide

Determining Email Addresses
Determining Email Addresses

The value of use_mapping_file and email_mapping_file determines which of two
areas of the convert_email() section are performed.

• When use_mapping_file is set to false (the default), iwsend_mail.ipl uses the
TeamSite username that has been passed to the script for the email address. If this
username contains a Windows NT domain before the name, it is removed and only the
username is used for the email address. If the value passed contains an “@” symbol it is
not changed. Otherwise, the maildomain value is appended.

• When use_mapping_file value is changed to true, the script uses a flat file to map the
TeamSite username to a corresponding email address. The TeamSite administrator must
maintain the flat file whenever new users are added. The script functionality should be
described before the format of the file. The script functionality:

– Creates a default email address by using the values of the specified recipients as passed
into the script.

– Opens the email mapping flat file and parses the contents searching for a match for the
specific recipient. If a match is found, $email_address is set to the corresponding
value. If no match is found, the recipient value is left unchanged.

– In both cases @maildomain is appended if needed.

The email mapping flat file must use the following format:

– Its location is specified by the email_mapping_file configuration option, for example:

IWHOME/local/config/email_map.cfg.

– It contains a list of names followed by a colon, and the email address, for example:

tsuser1: jsantoro

tsuser2: someone@some_domain

tsuser3: bgunn@interwoven.com
181

The iwsend_mail.ipl Script
Command Line Arguments

The iwsend_mail.ipl script includes command line functionality for greater flexibility
when sending workflow related notifications. This functionality includes multiple recipients,
mail sender identification, user-configurable subject lines and message bodies.

The usage for iwsend_mail.ipl is:

iwperl iwsend_mail.ipl <userid> <jobid> <taskid>

The command in the workflow would look like:

<command v="d:/iw-home/iw-perl/bin/iwperl d:/iw-home/bin/

iwsend_mail.ipl userid"/>

The workflow engine automatically supplies the jobid and taskid (and area), but they
must be added manually if you are going to run the script from the command line.

The following sections describe these arguments individually and then show an example
where they are combined to generate a complete notification.

Multiple Email Recipients

You can specify multiple email recipients on the command line for both To: and Cc: fields.
This can be accomplished in either of two ways (or using a combination of both):
• -t recipient1 –t recipient2 […]

• -t “recipient1,recipient2[,…]” -c recipient3 […]

The -t flag corresponds to the To: field and the -c flag corresponds to the CC: field.

Note: There must be at least one -t specification.
182 Workflow Developer’s Guide

Command Line Arguments
Mail Sender

You can specify who the sender of the message is supposed to be by using the -f sender
command. The sender address is validated the same way as each recipient’s name. The
default value is the task’s owner.

Subject Line

The default subject line is TeamSite Task Notification. You can replace the default
message by using the -s argument and entering the desired subject enclosed in double quotes.
For example:

-s “Top Priority Task Notification”

Message Body

By default, the message body contains the following parts:

• Summary information (Job Id, Areavpath, Job Name, Job Description)

• Message (the default is: A task in job JobId has been assigned to you.)

• List of comments associated with the task (if any)

• List of files associated with the task (if any)

You can replace the message portion with your own text by using either:

• -m “my one line message text”

• -b “/path_to_file_containing/message.txt”

If both options are specified, the -m option is ignored.
183

The iwsend_mail.ipl Script
Example

The following example assumes a Solaris system (to simplify the command line). If you
make the modifications as specified, the resulting email will look similar to the sample email
message on page 185.

• In the iw.cfg file:

[iwsend_mail]

maildomain=my_company.com

mailserver=smtp.my_company.com

use_mapping_file=true

email_mapping_file=/usr/iw-home/local/config/email_map.cfg

• In the email_map.cfg file:

tsuser1: jsantoro

tsuser2: someone@some_domain

tsuser3: vvenkata

• In instantiated workflow, a command specification in the workflow like the following
(note: this is one long line that has wrapped):

<command v='/usr/iw-home/bin/iwsend_mail.ipl -t "tsuser1, tsuser2" -

c chico -f Harpo@Marx-Brothers.com -m "This Space Available for

Advertising" -s "Sample Subject Line"'/>
184 Workflow Developer’s Guide

Command Line Arguments
Sample Email Message

Subject: Sample Subject Line

To: jsantoro@my_company.com, someone@some_domain

From: Harpo@Marx-Brothers.com

Cc: chico@my_company.com

X-Mailer: Mail::Mailer[v1.18] Net::SMTP[v2.15]

Date: Thu, 22 Feb 2001 13:04:20 -0500 (EST)

==

Job: 274972

Area: \default\main\devnet\WORKAREA\shared

Name: fmailTestWorkflow

Description: Demonstration of new iwsend_mail.ipl script

--

Date: Thu Feb 2 04:20:00 2001 Task: 274973 User: ZASTOLLERLNS\ghoti

> Transitioning from first user task to first externaltask using

> the new iwsend_mail.ipl

What do you think?

--

============================ File list ===============================

> move_files.ipl

> msdw_deploy.ipl

> msdw_rmreplicant.ipl

--
185

The iwsend_mail.ipl Script
186 Workflow Developer’s Guide

Appendix B

Creating a Nested Job
TeamSite enables workflow developers to create nested workflow—workflow that is contained within
other jobs or tasks. The implementation of nested workflow is similar to external and CGI tasks
where the activation of workflow tasks is either automatically or manually instantiated causing an
association of a new job with the workflow task. The nesting process creates a parent/
child relationship with the task as the parent and the job as the child.

The relationship between a workflow task and its nested workflow includes:

• the ability to pass variables and file lists from the parent task to the child job

• the ability for nested jobs to pass some or all variables and file lists to the parent job upon
the child job’s completion

• the lifetime of a nested job is dependent upon its parent task’s workflow lifetime—it should
not be removed from the backing store until its parent task is deleted

Workflow tasks can either be specified with a path to a job specification file or to a workflow
template file (.wft). In the case of a job specification file, upon activation of the workflow task,
TeamSite compiles and instantiates a new job using the specification file. In the case of a
workflow template file, the task owner must manually start the task using the New Job window
to input job variables and subsequently initiate the job.
187

Creating a Nested Job
Creating Jobs with Nested Workflow

Complete the following procedure to create a job with a nested workflow task. This procedure
assumes that the author_assignment_with_nested_job.wft file installed with
WorkflowBuilderis specified in your available_templates.cfg file. If it is not, you can
locate the sample workflow file in iw-home/local/config/wft/examples and add it to
your available_templates.cfg file.

The author_assignment_with_nested_job.wft file defines a job that contains two tasks,
the second of which does not begin until the first has been approved by an editor.

1. Log into TeamSite using the Editor, Master, or Administrator role.

2. Select File > New Job from the drop-down menu.

The New Job window is displayed.

3. Complete the following steps in the New Job window:

a. Select the Author Assignment with Optional Nested Job template.

b. Type a description of the new job, for example: Test of Nested Workflow.

c. Click New Job.

This executes the iwwft_instantiator.cgi to instantiate the job. The New Job
Template window is displayed with the description you entered in step b in the
Job Description field.

4. Complete the following steps in the New Job Template window:

a. Select an Author from the drop-down menu (to make this demonstration easier, select the
same user as you are currently logged in as).

b. Select a Branch from the drop-down menu.

c. Type the name of a workarea in the Enter Workarea field.

d. Click Run Job.
188 Workflow Developer’s Guide

5. In the main TeamSite window, click To Do to display the assignment of the job you just
created.

Note the following in the graphic:

– The Owner and Creator are both root.
– This screen does not make any mention of the nesting—it is invisible to the person to

which the task is assigned.
189

Creating a Nested Job
190 Workflow Developer’s Guide

Index

Symbols
$approver_default 145
$approver_email_default 145
$approver_lock_default 145
$approver_perform_tasks_

default 145
$approver_read_only_default

145
$contrib_email_default 145
$contrib_lock_default 145
$contrib_perform_tasks_

default 145
$contributor_default 145
$metadata_default 145
$number_of_approvers 143
$number_of_contributors 143
$numrows_default 145
$recurring_days 145
$skip_branch 144
$skip_email 144
$skip_metadata 144
$skip_recurring 144
$skip_save_job 144
$task_desc_default 145
$workarea_path_default 145
$workflow_name 145
.wfb files 53, 64, 71
.wft files 53, 64
@possible_approvers 144
@possible_contributers 144
A
access control using

constraints 66
adding

tasks 51
text labels 58
transitions 51

aligning objects 59
alignment buttons 59
alignment toolbar 44
anchor points 56
AND condition 21
attributes

about 22
CGI task 22
dummy task 23
email task 23
end task 24
external task 24, 27
group task 25
lock task 26
of jobs 22
of tasks 22
of transitions 22
setting 52, 60
submit task 27
update task 28
user task 29
values 60
workflow 30
attributes window
about 48

author_assignment.wft 141
author_assignment_with_

email.wft 141
author_assignment_with_

nested_job.wft 147
author_submit_dcr.wft 142
available_templates.ipl 110, 142

B
branches

constraining template
access 70

C
canvas size

about 46
CDATA 123
CGI tasks 19, 22

attributes 22
CGI_info directive 124
cgitask element 163
changing status of workflow

templates 72
concurrent_approval.wft 147
concurrent_approval_with_

email_with_
metadata.wft 147
191

concurrent_approval_with_
metadata.wft 148

conditions 21
configuration file 64
configuring

dual_work_order.wft 145
work_order.wft 143

constrainsts
branches 70

constraints
defined 66
modifying 70. 149
Roles 69
users 69
workflow templates 64

conventions
notation 9
path name 10

copying templates from
server 71

creating
custom variables 62
job specifications 52
workflow templates 49, 52

custom variables 62
variables

custom 36, 62

D
DCRs, templating 66
default

installation directory 41
template types 66

default_submit.wft 142
deleting workflow templates 72
displaying

toolbars 43
drawing transitions 56
192
DTDs
job specification file 153

dual_work_order.wft 142, 145
dummy tasks 19, 23

attributes 23

E
ELEM directive 128
elements

154, 160, 161, 161, 162
 subelement 156
 subelement 154
 subelement 161
 subelement 156
job specification file 153
task 155

email tasks 19, 23
attributes 23

end tasks 20, 24
attributes 24

endtask element 166
errata 11
error messages 48

and user variables 62
existing workflow templates 55

opening 55
external tasks 19, 24, 27

attributes 24, 27
externaltask element 162

F
failure transition 26
files

available_templates.ipl 142
locations 64
workflow 51

floating palettes 46
G
grids

about 47
properties 47
snap to 47

group tasks 19, 25
attributes 25

grouptask element 161

I
INSERT directive 132
installation directory 41
instantiating jobs 64
invoking workflow templates 66
iw_template_file 35
iw_template_name 35
iw_use_default 35
iw_user 35
iwcs_new_job 66
iw-home 35
iwinvokejob 151
iwjobc 151
iw-role 35
iw-session 35

J
job specification 17

defined 17
file 151

job specification files
defined 18
DTD 153
valid elements 153

jobs 17
defined 17
instantiating 64
see also workflow
Workflow Developer’s Guide

L
labels 58
locations

of files 64
lock tasks 20, 26

attributes 26
transitions 26

logging in 50, 52, 53

M
magnifying views 45
menu toolbar 44
metadata 144
modifying

constraints 70
moving objects 58

N
naming conventions, custom

variables 62
New Job 64
new_job 66
new_TFO_job 66
NOT condition 21
notation conventions 9

O
objects

aligning 59
moving 58
placing 56
selecting multiple 59

offline mode 53
opening workflow templates 55
OR condition 21
output

viewing 52
output window 48
about 48

P
parameters

task elements 155
path name conventions 10
Perl Code Editor 48, 62
placing objects 56

R
reducing views 45
regular expressions 149
required variables 62

S
sample workflow templates

workflow
sample templates 140

segmented transitions 56
selecting multiple objects 59
selection boxes 59
sending templates to TeamSite 64
sending to the server 64
serial_approval.wft 148
serial_approval_with_email_

with_ metadata.wft 148
serial_approval_with_

metadata.wft 148
server, TeamSite 66, 67, 71
setting

attributes 52, 60
system variables 61
user variables 62
variables 61

skip conflicts 27
skip locked 27
snap to grid 47
status bar
about 46

staus of workflow templates 72
straight transitions 56
Submit Job 64
submit tasks 19, 27

attributes 27
submittask element 164
success transition 26
successor sets 57
system variables

about 35
available 35
setting 61

T
TAG directive 129
TAG_info directive 120, 125
task elements 155
task toolbar 44
tasks 19

adding 51
CGI 19
defined 16
dummy 19
email 19
end 20
external 19
group 19
lock 20
submit 19
update 19
user 19

TeamSite
Front-Office 66
GUI 66
server 66, 67, 71
Templating 66
193

TeamSite server
logging in 54
transferring workflow

templates 64
template file

components 115
template_script element 122
text labels 58
timeout transitions 23
titles, for workflow templates 69
titles, workflow templates 67
toolbars

about 44
alignment 44
displaying 43, 46
hiding 43
menu 44
task 44
zoom 45

transferring
workflow templates 64

transitions 20
adding 51
drawing 56
failure 26
segmented 56
straight 56
success 26
timeout 23

tt_data 66
tt_delete_dcr 66

U
update tasks 19, 28

attributes 28
updatetask element 165
user tasks 19, 29

attributes 29
194
user variables 35
error messages 62
required 62
setting 62
validation rules 62

users
constrainingtemplate access 69

usertask element 160
using workflow templates 64

V
validation rules 62
VALUE directive 133
variables 22, 34, 35, 36, 61, 62

145
$approver_default 145
$approver_lock_default 145
$approver_perform_tasks_def

ault 145
$approver_read_only_default

145
$contrib_email_default 145
$contrib_lock_default 145
$contrib_perform_tasks_defa

ult 145
$contributor_default 145
$metadata_default 145
$numrows_default 145
$recurring_days 145
$skip_branch 144
$skip_email 144
$skip_metadata 144
$skip_recurring 144
$skip_save_job 144
$task_desc_default 145
$workarea_path_default 145
$workflow_name 145
@$number_of_approvers 143
@$number_of_contributors
143

@possible_approvers 144
@possible_contributers 144
about 34
custom 62
naming conventions 62
setting 61
system 35
text 36, 62
user 35

View menu
about 45

viewing output 52

W
work_order.wft 142, 143
Workbook view

about 46
workflow

CGI_info directive 124
cgitask element 163
CLTs 152
default templates 141
ELEM directive 128
endtask element 166
example templates 147
external task element 162
grouptask element 161
INSERT directive 132
instantiating a job 151
job specification 17
job specification DTD 153
job specification file 151
jobs 17
model 16
POST/GET data 120
sample template file 120, 135
Workflow Developer’s Guide

schematic of 116
submittask element 164
TAG directive 129
TAG_info directive 125
tasks 16
template file

components 115
sample 120, 135
structure and syntax 119

template_script element 122
updatetask element 165
usertask element 160
VALUE directive 133
variables in strings 135
variables passed via POST/

GET 129
workflow element 154

workflow attributes 30
workflow files

on the TeamSite server 51
workflow templates 18, 64

access control 66
assigning titles 67
changing status 72
constraints 64, 66, 149
copying from server 71
creating 49
defined 18
deleting 72
editing existing 55
invoking 66
opening 55
sending to server 64
sending to TeamSite 64
titles 67, 69
types 66, 69
usage 64
using 64
X
XML

bypassing the parser 123

Z
zoom toolbar 45
zooming 45, 47

normal 47
percent 47
to fit objects 45, 47
to fit selection 45
195

196
 Workflow Developer’s Guide

	TeamSite® Workflow Developer’s Guide
	Table of Contents
	About This Book
	Notation Conventions
	Notation of iw-home on UNIX and Windows Systems
	Windows Path Name Conventions
	Online Documentation Errata

	Introduction
	What’s in TeamSite Workflow?
	Workflow Terminology
	Tasks
	Workflow Models
	Jobs
	Workflow Templates
	Job Specification Files

	Workflow Elements
	Tasks
	Transitions
	Conditions

	Task Attributes
	CGI Task Attributes
	Dummy Task Attributes
	Email Task Attributes
	End Task Attributes
	External Task Attributes
	Group Task Attributes
	Lock Task Attributes
	Nested Job Task Attributes
	Submit Task Attributes
	Update Task Attributes
	User Task Attributes
	Workflow Attributes
	Dynamic Attributes
	Dynamically Modifying Attributes Using the GUI
	Dynamically Modifying Task and Job Attributes from the Command-line

	Variables
	User Variables
	System Variables
	Custom Variables

	Nested Workflow
	Creating Jobs with Nested Workflow

	Installing WorkflowBuilder
	Installation Prerequisites
	Installing the WorkflowBuilder Server
	Windows NT or Windows 2000 Servers
	Solaris Servers

	Installing the WorkflowBuilder Client
	Uninstalling WorkflowBuilder

	WorkflowBuilder�GUI
	Toolbars
	The Menu Toolbar
	The Tasks Toolbar
	The Alignment Toolbar
	The Zoom Toolbar

	The View Menu
	Workbook
	Sticky Mode
	Toolbars
	Status Bar
	Set Canvas Size
	Grid
	Snap to Grid
	Grid Properties
	Zoom Normal
	Zoom to Fit
	Zoom Percent
	Zoom Custom
	Attributes Window
	Output Window
	Perl Code Editor

	Where To Go from Here

	Using WorkflowBuilder
	Sample Workflow Templates
	Viewing and Modifying Example Templates in WorkflowBuilder

	Creating New Jobs and Workflow Templates
	Logging In
	Editing Existing Workflow Templates
	Placing Tasks on the Canvas
	Drawing Transitions
	Adding Text Labels
	Moving Objects
	Selecting Multiple Objects
	Aligning Objects
	Setting Attributes
	Setting Variables
	Creating System Variables
	Creating Custom Variables
	Creating User Variables

	Configuring Templates to Include Preselected Files
	Sending Workflow Templates to the Server
	Workflow Template Constraints
	Workflow Template Type Constraints
	User Constraints
	Branch Constraints
	Defining a Workflow Constraint

	Retrieving Files from the Server
	Deleting Files from the Server
	WorkflowBuilder Error Codes

	WorkflowBuilder Tutorial
	Prerequisites
	Setting up the Tutorial Environment

	Tutorial Overview
	Development
	Deployment
	Instantiation

	Creating a New Workflow
	Variables Overview
	Naming Conventions
	Custom Variables
	Creating the sOwner Variable
	Creating the uDescription Variable
	Creating the cArea_VPath Variable
	Creating the cUnlockFile Variable
	Creating the uAuthor Variable
	Creating the cNested_Job Variable

	Defining Custom Variables
	Specifying Workflow Attributes
	Specifying Task Attributes
	Specifying Transitions
	Printing Your Template
	Saving Your Template
	Sending Your Template to the TeamSite Server
	Testing Your Work

	Workflow Configuration Files
	The available_templates.cfg File
	available_templates.cfg Structure
	user_list element
	role_list element
	branch_list element

	Modifying available_templates.cfg from WorkflowBuilder

	The available_templates.ipl file
	The available_templates.dtd File
	The iw.cfg File
	[iwsend_mail] Parameters
	[workflow] Parameters

	Workflow Template Files
	Workflow Illustrated
	Diagram Key
	Workflow Template File
	Instantiator CGI
	Browser Interface (GUI)
	Job Specification File
	Server-Side Workflow Subsystem

	Workflow Template File Structure
	Simple Workflow Template File
	The <template_script> Element
	The CGI_info Directive
	Usage:
	Description:
	Example:

	The TAG_info Directive
	Usage:
	Description:
	Array Validators
	Example:

	The �__ELEM__ �Directive
	Usage:
	Description:
	Example:

	The __TAG__ Directive
	Usage:
	Description:
	Examples:

	The �__INSERT__� Directive
	Usage:
	Description:
	Example:

	The __VALUE__ Directive
	Usage:
	Description:
	Example:

	Other Elements
	Using Variables in Strings
	Scenario 1: Basic Variable Usage
	Scenario 2: Including Quotation Marks in Insertions
	Scenario 3: Preferred Ordering of Single and Double Quotes

	Complex Workflow Template File

	Debugging Workflow Files
	iw_debug_mode
	iw_output_file
	Usage:
	Example:

	Workflow Log File

	Sample Workflow Templates
	Sample Template Locations
	Default Template Descriptions
	Configuring the Work Order Template
	Configuring the Dual Work Order Template

	Example Template Descriptions

	Regular Expression Support

	Job Specification Files
	Running Manually Created Jobs
	Job Specification File Structure
	Element Definitions
	<workflow> Element
	Parameters Common to All Tasks
	<usertask> Element
	<grouptask> Element
	<sharedby> Element
	<externaltask> Element
	<cgitask> Element
	<submittask> Element
	<updatetask> Element
	<endtask> Element
	<dummytask> Element
	<locktask> Element

	Perl Modules
	TeamSite::WFsystem
	Synopsis
	Functions
	Examples

	TeamSite::WFworkflow
	Synopsis
	Functions
	Examples

	TeamSite::WFtask
	Synopsis
	Functions
	Example

	Sample Job Specification File

	The iwsend_mail.ipl Script
	What’s New In iwsend_mail.ipl?
	Configuring iw.cfg with Site-specific Information
	Determining Email Addresses
	Command Line Arguments
	Multiple Email Recipients
	Mail Sender
	Subject Line
	Message Body
	Example
	Sample Email Message

	Creating a Nested Job
	Creating Jobs with Nested Workflow

	Index

